Cytotoxic Effects of Interferon in Vitro on Granulocytic Progenitor Cells

Peter L. Greenberg and Susan A. Mosny
Department of Medicine, Veterans Administration Hospital and Stanford University School of Medicine, Palo Alto, California 94304

SUMMARY

We have utilized in vitro marrow culture techniques to evaluate the cytotoxicity for granulocytic progenitor cells of two highly purified human leukocyte interferon preparations. Concentration- and time-related decrements in granulocytic colony-forming capacity in agar occurred with human and mouse marrow. Although mouse marrow cells were less sensitive than were human cells, these data indicate lack of strict species specificity for the cell growth-inhibitory effects of interferon. Similar cytotoxicity was noted for normal and leukemic human clonogenic cells exposed to interferon for prolonged periods. The decrease in the proportion of granulocytic progenitor cells in DNA synthesis, which occurred at high concentrations, and the diminution by interferon of the cytotoxicity caused by cytosine arabinoside demonstrate that interferon decreases DNA synthesis of granulocytic progenitor cells. The lack of enhanced cytotoxicity for rapidly proliferating mouse post-endotoxin marrow cells indicates that interferon is not a cell cycle-stage-specific drug. These data seem useful for evaluating the suppressive effects of interferon on granulopoiesis and for devising clinical trials with this agent.

INTRODUCTION

Interferon is a virus-inhibitory protein produced by intact animals and cultured cells infected with viruses or stimulated with certain nonviral substances (6, 22). In addition to inhibiting viral replication, preparations of interferon also interfere with the proliferation of a variety of normal and neoplastic cells (21, 24). Based on encouraging results in experimental animal models, clinical trials utilizing interferon for treating a variety of normal and neoplastic cells have been organized (17, 31, 32, 36). During 1 of these trials (17), neutropenia was observed, which suggested possible suppression of granulopoiesis by interferon.

In vitro marrow culture techniques have been utilized to evaluate granulopoiesis in animals and human subjects (19, 35). With these methods marrow GPC proliferate to form colonies of myeloid cells in semisolid agar under the necessary influence of the stimulatory substance(s) termed CSA. Prior studies with these techniques have shown that in vitro cytotoxicity with certain chemotherapeutic agents correlated well with their in vivo effects (5, 12, 18, 20). Nonhuman interferon preparations have been shown to be inhibitory in vitro for mouse marrow granulocytic colony-forming cell proliferation (29). To improve our understanding of the effects of interferon, we have used in vitro marrow culture techniques to determine the cytotoxicity for human and mouse granulocytic precursors of P-IF preparations. Since interferon may be used in combination with other chemotherapeutic agents, we have evaluated the interaction of interferon with the cycle-active drug, ara-C.

MATERIALS AND METHODS

In Vitro Marrow Culture. Our methods for evaluating human and mouse marrow GPC in agar culture and the thymidine suicide technique, which determines the proportion of GPC-S, have previously been described (18). Nonhuman interferon preparations have been shown to be inhibitory in vitro for mouse marrow granulocytic colony-forming cell proliferation (29). To improve our understanding of the effects of interferon, we have used in vitro marrow culture techniques to determine the cytotoxicity for human and mouse granulocytic precursors of P-IF preparations. Since interferon may be used in combination with other chemotherapeutic agents, we have evaluated the interaction of interferon with the cycle-active drug, ara-C.

Received December 30, 1976; accepted March 17, 1977.

1 Supported by Grant CA13141 from the National Cancer Institute; by Grant AI-05629 from the National Institute of Allergy and Infectious Diseases, NIH, USPHS; and by the Medical Research Service of the Veterans Administration.

2 Scholar, Leukemia Society of America, Inc. To whom requests for reprints should be addressed.

a The abbreviations used are: GPC, granulocytic progenitor cells; CSA, colony-stimulating activity; P-IF, partially purified human leukocyte interferon; ara-C, 1-β-D-arabinofuranosylcytosine (cytosine arabinoside, Cytosan); CFC, colony-forming capacity; GPC-S, granulocytic progenitor cells in DNA synthesis; IA-IF, immunoabsorbed human leukocyte interferon.

1794 CANCER RESEARCH VOL. 37
survival of colony-forming cells. For short-term exposure 2 to \(5 \times 10^6\) marrow cells per ml medium were placed in an air-CO2 incubator at 37\(^\circ\) without drug (control cells) or with different drug concentrations for 1 or 4 hr. After exposure to the drug, the cells were washed 3 times with medium and were plated in agar; CFC was determined after 7 to 10 days of incubation. Surviving CFC's in cultures exposed to drugs were compared to those cultured simultaneously for the same time without drugs.

Suspension culture conditions were adequate for survival of colony-forming cells since 98 ± 6.1% (S.E.) of these cells unexposed to drug survived for the period of suspension culture. Cellular recovery was also comparable in the incubated exposed and unexposed cell suspensions. For evaluation of the cytotoxic effects of prolonged exposure of interferon and/or ara-C, these drugs were added directly to culture dishes prior to addition of the marrow cells in agar medium. Pilot experiments showed that the bulk of the antiviral activity of interferon (tested as described below) persisted in liquid medium at 37\(^\circ\) for the 10-day period of marrow culture. Prior studies have demonstrated the same persistence of ara-C in culture (20). Statistical analyses were performed with Student's t test.

Interferon Preparations and Assays. Two human leukocyte interferon preparations were evaluated. Partially purified interferon (P-IF), produced by Sendai virus stimulation of buffy-coat leukocytes according to the method of Cantell (7), had a specific activity of 5 \(\times\) \(10^8\) units/mg protein. A more highly purified material (IA-IF) obtained by interferon antibody affinity chromatography processing of P-IF (2) had a specific activity of 2 to 3 \(\times\) \(10^8\) units/mg protein and was provided by Dr. Kurt Pauckem, Medical College of Pennsylvania, Philadelphia, Pa. The activity of the interferon preparations was assayed by measuring the ability of the preparations to inhibit plaque formation of vesicular stomatitis virus in human foreskin fibroblast cultures, as previously described (30). Interferon unitage is expressed in terms of Reference Standard 69/19 supplied by the National Institute of Allergy and Infectious Diseases, Bethesda, Md. One unit of human interferon in this assay is equal to 1 unit of the human interferon reference standard.

Interferon Inactivation. Interferon (P-IF) was inactivated by 2 methods and tested for antiviral effects as well as for its ability to inhibit granulocytic colony formation. The interferon was incubated with trypsin (0.1 mg/ml; Difco Laboratories, Inc., Detroit, Mich.) for 1 hr at 37\(^\circ\) before addition of ovalbumin or soybean trypsin inhibitor (Sigma Chemical Co., St. Louis, Mo.). Trypsin inhibitor alone did not alter the antiviral or granulocyte-inhibitory effects of interferon. Rabbit anti-human leukocyte interferon globulin (Antiserum 24), prepared as previously described (2), was provided by Dr. George Galasso, NIH. The interferon preparation was incubated with the antisem for 1 hr at 37\(^\circ\) in unit ratios of 1:0.5 to 1 for the neutralization experiments.

ara-C. ara-C (The Upjohn Co., Kalamazoo, Mich.) was dissolved in 0.9% NaCl solution and used after fresh preparation.

Endotoxin. In certain experiments mice were pretreated with endotoxin \(20 \mu g\) i.p. (Lipopolysaccharide B, *Salmonella typhimurium*; Difco) 24 hr before the marrow cells were collected and exposed to interferon in vitro. Endotoxin exposure increases the proportion of GPC-S and the in vivo and in vitro sensitivity of GPC to cycle-specific chemotherapeutic drugs (12, 20).

The *Limulus* lysate test, which detects the presence of endotoxin or endotoxin-like substances in biological materials (10, 27), was utilized to assess the presence of endotoxin in the interferon preparations. We utilized Pyrotect (Difco), a standardized reagent prepared from lysed amoebocytes of *Limulus polyphemus*, to detect endotoxin. Positive controls (Pyrotrol, Difco) contained known concentrations of bacterial endotoxin. Test samples or positive and negative controls were incubated, as previously described (10, 27), with equal volumes of Pyrotect for 1 hr at 37\(^\circ\). The formation of a gel in the test vial indicated the presence of endotoxin.

Patients. Interferon and ara-C effects were evaluated on marrow cells from 10 control subjects with morphologically normal marrow granulopoiesis and normal complete blood counts and from 3 patients with chronic myeloid leukemia. Marrow aspirations were performed after informed consent was obtained.

RESULTS

Human Marrow Cells. Continuous exposure of human marrow cells to both interferon preparations (P-IF and IA-IF) for 7 days produced essentially identical dose-related decrements in colony-forming cell survival (Chart 1). Marrow cells from patients with chronic myeloid leukemia showed similar susceptibility to the cytotoxic effects of 7-day exposure to interferon. Short exposures (1 or 4 hr) to P-IF interferon caused no decrease in normal colony-forming cell survival.

The effects of 1-hr exposure of human marrow cells to the combination of ara-C (1 \(\mu g/ml\)) and P-IF interferon \(10^4\) units/ml in differing sequences were evaluated. Additive cytotoxicity (Chart 2) was noted when interferon was given during or after ara-C exposure but not when interferon preceded ara-C.

Prolonged exposure of human marrow cells to interferon and ara-C produced additive cytotoxicity at low levels of ara-C (Chart 3), particularly at the ara-C concentration of 0.0001 \(\mu g/ml\) \(p < 0.05\).

Mouse Marrow Cells. Continuous exposure of mouse marrow cells to both interferon preparations showed dose-related decrements in colony-forming cell survival (Chart 4). The inhibitory effects of P-IF and IA-IF were similar except for increased cytotoxicity by IA-IF at the relatively high concentration of \(10^2\) units/ml \(p < 0.01\). Mouse marrow colony-forming cells were less sensitive than were human cells to cytotoxic effects of both human interferon preparations, with a significant difference being found with P-IF (\(p < 0.001\) by the Spearman-Karber analysis) (Charts 1 and 4). Marrow cells from postendotoxin mice [i.e., with a higher proportion of GPC-S (12,20)] showed no increased sensitivity to interferon, and at concentrations \(>10^2\) units/ml the cells showed decreased cytotoxicity \(p < 0.05\). Short exposure (1 hr) of mouse marrow cells to interferon was associated with minimal decrease in colony-forming cell survival (Chart 4). For further evaluation of the effects of interferon...
Chart 1. Cytotoxicity in vitro of interferon for human marrow colony-forming cells. Exposure times noted are: P-IF 1 hr, 4 hr, 7 days; and IA-IF 7 days. Bars, S.E.

Chart 2. Cytotoxicity in vitro of short exposures of ara-C and interferon (Int), alone and in combination, for human marrow colony-forming cells. A, 1 hr of interferon exposure followed by 1 hr of ara-C exposure; B, 1 hr of concurrent interferon and ara-C exposure followed by a 1 hr of rest before plating in agar; C, 1 hr of ara-C exposure followed by 1 hr of interferon exposure. Bars, S.E.

on cell cycle characteristics, thymidine suicide experiments were performed before and after 1-hr exposure of mouse cells to interferon. The proportion of GPC-S remained essentially unaltered from basal levels of 35.8 ± 2.8% with interferon concentrations of 10² and 10³ units/ml. However, at concentrations of 10⁴ units/ml the proportion of GPC-S decreased significantly to 22.9 ± 5.6% (p < 0.05).

Inactivation of the antiviral and nonantiviral activities of P-IF was performed by 2 methods to help determine what specificity of the cell growth-inhibitory effects was due to interferon. Trypsin treatment and anti-interferon globulin incubation inactivated the suppressive effects of interferon on human and mouse colony-forming cell proliferation (Table 1). Antibody neutralization (with rabbit anti-human interferon globulin) of interferon for determining mouse marrow colony formation could not be evaluated since normal rabbit serum markedly suppressed mouse CFC. These procedures also inactivated the antiviral effects of interferon as indicated by the diminution of antiviral titers with trypsinization and interferon antibody incubation from 3 x 10⁴ to <30 units/ml and from 1.2 x 10³ to <30 units/ml, respectively. The antiviral titer is the reciprocal of the level at which 50% of the viral plaques were inhibited (30).

Endotoxin in concentrations ≥0.1 µg/ml in vitro suppresses marrow CFC, whereas concentrations ≤0.01 µg/ml do not (9). The P-IF and IA-IF interferon preparations were assayed for the presence of endotoxin with the Limulus lysate test. At interferon concentrations of 10² to 10³ units/ml (concentrations causing appreciable CFC cytotoxicity), the IA-IF contained no endotoxin, whereas the P-IF preparation was negative at 10¹ units/ml and contained <0.01 µg/ml endotoxin at 10³ units/ml.

Since similar cells (human peripheral leukocytes) are used to produce the interferon preparations tested and the conditioned medium that we utilized for human marrow cell CSA, we assayed the interferon preparations for CSA. P-IF and IA-IF concentrations of 10¹ to 10⁴ units/ml contained no CSA when added to human marrow cells cultured in agar, as described in "Materials and Methods."

DISCUSSION

Our data have demonstrated that prolonged exposure to 2 highly purified human leukocyte interferon preparations caused dose-related inhibition of the proliferation of both human and mouse marrow GPC. Although lesser effects were noted in the heterologous species, these findings indicate the lack of strict species specificity for the antiproliferative effects of human leukocyte interferon for marrow col-
Granulopoietic Cytotoxicity of Interferon

Chart 3. Cytotoxicity in vitro of prolonged exposure (7 day) of ara-C alone and in combination with interferon (Int), 50 units/ml, for human marrow colony-forming cells. Bars, S.E.

Chart 4. Cytotoxicity in vitro of interferon for mouse marrow colony-forming cells. Exposure times noted are: P-IF interferon, 1 hr and 10 days, postendotoxin (β endotoxin) marrow cells, 10 days; IA-IF interferon, 10 days, Bars, S.E.

ony-forming cells. Prior studies have also shown similar heterologous cell growth-inhibitory effects of human leukocyte interferon for a subline of mouse fibroblasts (3).

Our findings of persistence of granulopoietic suppression with the more highly purified IA-IF interferon and of elimination of interferon cytotoxicity by trypsin and antibody inactivation of antiviral activity suggest that the myeloid cell growth- and viral-inhibitory effects were due to the interferon rather than the contaminating protein. Recent studies (3, 24, 26, 34) that have evaluated the electrophoretic profiles of interferon have provided strong evidence that both antiviral and cell growth-inhibitory activities are intrinsic properties of interferon. Our studies with the Limulus lysate test indicated that possible contamination of the interferon preparations with low concentrations of endotoxin did not contribute to the in vitro cytotoxicity of interferon for GPC. In addition, no CSA was present in the interferon preparations.

Endotoxin administration, which causes regeneration of marrow cells and increases the proportion of GPC-S (12, 20), did not enhance the suppressive effects of interferon on granulocytic proliferation, which suggests that interferon does not act as a cycle-specific agent. Short exposures of interferon at high dose levels decreased the proportion of GPC-S. Furthermore, interferon diminished the ability by short exposure of the cycle-specific agent, ara-C, to kill colony-forming cells (Chart 2). These findings indicate that short exposure of interferon, although not directly cytotoxic, interferes with granulocytic precursor cell cycling characteristics by decreasing the proportion of GPC-S.
in vivo role of interferon in inhibiting marrow CFC and granulopoiesis in viremic experimental animals that develop neutropenia. The relationship between interferon and the lipoprotein inhibitors of granulopoiesis appearing in the serum of patients during viral infections (16) remains to be determined.

These studies appear to be useful for understanding the inhibitory effects of interferon on the proliferation of granulopoietic cells and should provide improved models for devising chemotherapeutic regimens with this agent for clinical trials.

ACKNOWLEDGMENTS

The authors wish to thank Dr. T. C. Merigan, Stanford University Medical Center, for making the P-IF available and for performing the assays evaluating the antiviral activity of interferon. We thank Barbara Hofmeister for excellent technical assistance.

REFERENCES

10. Cooper, J. F., Levin, J., and Wagner, H. N., Jr. Quantitative Comparison of...
Granulopoietic Cytotoxicity of Interferon

Cytotoxic Effects of Interferon *in Vitro* on Granulocytic Progenitor Cells

Peter L. Greenberg and Susan A. Mosny

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/37/6/1794

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.