Mechanism of Cross-Resistance between Vincristine and Daunorubicin in Ehrlich Ascites Tumor Cells

Torben Skovsgaard

Department of Internal Medicine, The Finsen Institute, Strandboulevarden 49, DK 2100 Copenhagen 0 Denmark

ABSTRACT

An investigation was undertaken of the mechanism of a previously reported cross-resistance between vincristine (VCR) and daunorubicin (DNR) in Ehrlich ascites tumor cells. No significant difference was demonstrated for the time course of [3H]VCR uptake in cells resistant to VCR (EHR 2/VCR+) and in cells resistant to DNR (EHR 2/DNR+), whereas wild-type cells accumulated nearly 6-fold more drug at steady state. The energy dependence of [3H]VCR and of DNR transport was investigated by the metabolic inhibitors sodium azide and iodoacetic acid. These studies revealed that uptake of [3H]VCR and of DNR was depressed in both resistant sublines by an energy-dependent process that mostly requires energy from glycolysis. If glucose was omitted from the medium together with addition of sodium azide, the uptake of [3H]VCR and of DNR in EHR 2/VCR+ reached a level nearly equal to that of wild-type cells. If glycolysis was restored by addition of glucose to the resistant cells loaded with drug in this way, a pronounced extrusion of [3H]VCR and of DNR was induced. In a similar experiment with wild-type cells, a slight but significant extrusion of [3H]VCR could be induced.

The studies showed that, for nearly unidirectional influx, the cells must be incubated in the medium without glucose but with sodium azide. In this medium the influx of [3H]VCR and of DNR was significantly higher in wild-type cells than in cells from the resistant sublines. The flux of DNR was not competitively inhibited by VCR either in wild-type cells or in resistant cells. The data indicate that the mechanism of cross-resistance between VCR and DNR in Ehrlich ascites tumor cells is a result of at least two different mechanisms: (a) an energy-dependent drug extrusion common to VCR and DNR; and (b) unspecific changes in the membrane, which reduce the influx of both compounds.

INTRODUCTION

In several studies, cross-resistance between anthracycline derivatives and Vinca alkaloids has been shown (3, 10-12, 17, 24, 30). These observations are surprising as they belong to 2 different classes of drugs, with different cellular targets and mechanisms of action. The findings of cross-resistance suggest a common mode of resistance for Vinca alkaloids and the anthracyclines. In VBL-resistant Ehrlich ascites cells, Creasey (9) had demonstrated both reduced uptake of [3H]VBL and slower conversion of the drug to alkali-labile material. In a VCR-resistant subline of P388, Bleyer et al. (4) demonstrated decreased accumulation and binding of [3H]VCR. As regards the anthracycline antibiotics, it has been confirmed in several tumor systems that decreased cellular drug uptake is an important mechanism of resistance (7, 8, 13, 14, 18, 23, 28). For DNR the mechanism of decreased drug uptake in Ehrlich ascites tumor cells has been shown to be multifactorial, including decreased influx, increased efflux, and a lower affinity for intracellular binding sites (13, 27).

The present study was undertaken to elucidate the cellular mechanism of resistance to Vinca alkaloids in Ehrlich ascites tumor cells and the mechanism of cross-resistance between Vinca alkaloids and anthracyclines. As compounds, VCR was chosen as representative of the Vinca alkaloid group, and DNR was chosen as representative of the anthracycline group.

MATERIALS AND METHODS

[3H]vincristine sulfate was obtained from the Radiochemical Centre, Amersham, England, and was stored at −20°C in the dark. The compound was supplied as a solution in methanol (adjusted to pH 4.3 with 0.05 N sulfuric acid) with a specific activity of 2.6 to 9.1 Ci/mmol. The radiochemical purity of the product was determined by thin-layer chromatography on silica gel plates. A mixture of 0.4 x 10^-7 mmol [3H]VCR and 1 mmol VCR was dissolved in 1.0 ml methanol and chromatographed in the solvent systems: (a) diethyl ether:toluene:methanol:diethylamine (100:5:5:5), and (b) chloroform:methanol:formic acid (70:20:5). The radioactivity in spots identified as the authentic compound (viewed under UV) as well as in the residue of the chromatogram divided into sections was determined by liquid scintillation. In both systems, >93% of the counts were within the VCR spot. Vincristine sulfate (Oncovin) was obtained from Eli Lilly & Co., Indianapolis, Ind. DNR as hydrochloride was obtained from Farmitalia, Milan, Italy. Sodium azide was obtained from Merck, Darmstadt, Germany; and iodoacetic acid from Sigma Chemical Co., St. Louis, Mo.

Experiments were performed with Ehrlich ascites tumor cells maintained in first-generation hybrids of female random-bred Swiss mice and male inbred DBA mice by weekly transplantation. Development of the tumor lines resistant to VCR (EHR 2/VCR+) and to DNR (EHR 2/DNR+) was performed in vivo by treatment with increasing doses of drug during weekly passages of the tumor (10, 12). The resistant tumor lines were maintained by daily treatment for 4 days in each passage (total dose = 10% lethal dose); no drug treatment was given in the last passages before the experi-
ments. Unless otherwise stated, the preparation of cells, incubation, and the sampling procedure were performed as previously described (26, 27). The standard medium contained 57.0 mM NaCl, 5.0 mM KCl, 1.3 mM MgSO₄, 9 mM NaH₂PO₄, 51 mM Na₂HPO₄, and 10 mM glucose (pH adjusted to 7.45). In all experiments, calf serum constituting 5% v/v was added.

Determination of Drug Uptake. For determination of the cellular content of [³H]VCR, the pellet was digested in 0.8 ml 0.5 N KOH at 70° for 1 hr. After cooling to room temperature, 200 μl cell extract were transferred to the scintillation solution (Packard Insta-Gel, Packard Instrument Co., Downer's Grove, Ill.), and the vials were counted in a Beckman LS-250 liquid scintillation spectrometer. In experiments in which [³H]VCR and DNR were used simultaneously, the influence of quenching was negligible. Cellular uptake of DNR was determined by measuring the total drug fluorescence extracted from the drained cell pellet as previously described (26).

The metabolism of DNR in wild-type cells of Ehrlich ascites tumor has previously been evaluated in this laboratory (13, 25). By the thin-layer chromatography technique, the metabolism was found to be <10% during a 1-hr incubation. By the same technique the metabolism of DNR in EHR 2/VCA+ was determined to be <5%. The metabolism of [³H]VCR was determined by a modification of the method of Castle and Mead (6). One μM [³H]VCR was added to 25 ml suspension of cells (0.5 v/v) of wild-type tumor cells, EHR 2/VCA+, and EHR 2/DNR+. Controls consisted of a corresponding suspension of the same tumor without drug. After incubation for 60 min at 37° in standard medium, the cells were homogenized by ultrasonification at 0°, and the suspensions were mixed with an equal volume of ice-cold ethanol including 1 mg VCR carrier. To the controls, 2.5 nmol [³H]VCR were also added. The solutions were adjusted to pH 8 with ammonium hydroxide and centrifuged. The supernatant was decanted off, and the pellet was extracted twice more with 5 ml ice-cold ethanol. The pooled ethanol fractions were extracted twice with an equal volume of methylene chloride, and the organic phase from each of the extractions was evaporated to dryness. The residue was redissolved in methanol and chromatographed as described previously. The VCR spot was identified under UV, scraped off from the plate, and assayed for tritium. The chromatogram remaining after removal of the VCR spot was divided into equal sections and assayed for tritium. No major differences were observed between the 3 tumor lines. In all cases, >94% of the radioactivity of the VCR spot of controls were recovered from the VCR spot of the tested extracts.

RESULTS

Chart 1 illustrates the time course of uptake of [³H]VCR in cells of the wild-type tumor and in cells of sublines resistant to VCR or to DNR. Both the rate of net uptake and the steady state were considerably higher in the wild-type tumor than in the 2 resistant sublines. At steady state the cell:medium ratio in wild-type tumor cells was calculated as 10. No significant difference could be demonstrated between the steady-state levels of EHR 2/VCA+ and EHR 2/DNR+; the cell:medium ratios for these tumor lines had been determined as 1.8.

Table 1 shows the influence of the energy metabolism on the uptake of [³H]VCR and DNR in wild-type tumor cells and in tumor cells resistant to the 2 drugs. The influence of glycolysis on uptake was determined by addition of iodoacetic acid to the suspension in a concentration sufficient to obtain inhibition of glycolysis (22); the influence of oxidative phosphorylation on uptake was evaluated by the addition of the specific inhibitor sodium azide (31). The exposure of the tumor cells to the metabolic poisons resulted in the same effect on the uptake of [³H]VCR and of DNR. A selective inhibition of oxidative phosphorylation had nearly no effect on drug uptake. The selective inhibition of glycolysis with iodoacetate in most cases resulted in a moderate increase in drug uptake. However, if both sodium azide and iodoacetic acid were added to the cell suspension, a synergistic increase in drug uptake was observed. The findings indicate that the uptake of both [³H]VCR and DNR in all of the tested sublines of Ehrlich ascites tumor cells is depressed by an energy-dependent process. Furthermore, the results suggest that the energy derived from glycolysis may substitute completely for oxidative phosphorylation, whereas oxidative phosphorylation may only partially substitute for glycolysis as energy supplier. In a comparison of the effect of energy blockade on drug uptake in the different tumor lines, it appeared that the increment in uptake for both drugs was considerably more pronounced for the resistant sublines than for the wild-type tumor. When both sources of energy were inhibited, the uptake of [³H]VCR in resistant cells corresponded to 62 to 82% of that in wild-type cells, and the uptake of DNR in the resistant cells corresponded to 87 to 98% of that in wild-type tumor cells.

Because Ehrlich ascites tumor cells are incapable of glycogenesis (1), glycolysis in these cells occurs only in the presence of exogenous glucose (19, 32); i.e., the total energy metabolism of these cells may also be stopped by the omission of glucose from the medium and addition of sodium azide. Chart 2 shows the uptake of [³H]VCR in EHR...
Effect of metabolic inhibitors on uptake of $[^3H]VCR$ and DNR

$[^3H]VCR$ at 1 μM and DNR at 5 μM were added at 0 time. Cellular drug content after 2 washings was determined at incubation for 60 min, as described in "Materials and Methods."

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Controla</th>
<th>Azideb</th>
<th>Iodoacetic acidc</th>
<th>Azide + iodoacetic acidc</th>
<th>Control</th>
<th>Azide</th>
<th>Iodoacetic acidc</th>
<th>Azide + iodoacetic acidc</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHR 2</td>
<td>8.55 ± 0.07d</td>
<td>8.74 ± 0.02</td>
<td>8.48 ± 0.04</td>
<td>10.05 ± 0.12</td>
<td>589 ± 4</td>
<td>601 ± 2</td>
<td>681 ± 4</td>
<td>725 ± 7</td>
</tr>
<tr>
<td>EHR 2/VCR+</td>
<td>2.16 ± 0.16</td>
<td>2.16 ± 0.04</td>
<td>4.01 ± 0.18</td>
<td>8.26 ± 0.16</td>
<td>209 ± 2</td>
<td>200 ± 4</td>
<td>393 ± 0</td>
<td>711 ± 2</td>
</tr>
<tr>
<td>EHR 2/DNR+</td>
<td>1.95 ± 0.02</td>
<td>1.94 ± 0.10</td>
<td>2.66 ± 0.06</td>
<td>6.26 ± 0.05</td>
<td>175 ± 3</td>
<td>171 ± 4</td>
<td>289 ± 6</td>
<td>631 ± 9</td>
</tr>
</tbody>
</table>

a Standard medium.

b Standard medium with 10 mM sodium azide; the cells were exposed to the poison 10 min prior to exposure to the drug.

c Standard medium with 0.2 mM iodoacetic acid; the cells were exposed to the poison 30 min prior to exposure to the drug.

d Mean ± S.E. of 3 determinations.

Charts 2 and 3 show the initial uptake of $[^3H]VCR$ and DNA, respectively, in the tumor cells resistant to VCR. For both drugs the uptake experiments were performed in standard medium and in a medium without glucose but with 10 mM sodium azide. In all cases the uptake was linear for at least 55 sec, indicating that the concentration gradient was nearly constant within that period. When extrapolated to 0 time, the lines for both drugs showed a positive intercept, which was only slightly influenced by the composition of the medium. This component is thought mainly to reflect an initial adsorption of drug on the cell surface components. For both drugs, inhibition of the cellular energy metabolism results in a significant increment of the slope of the linear phase. This finding indicates that the component of active efflux exerts its effect so early in the uptake process that determination of unidirectional influx is not obtainable in the standard medium. Charts 5 and 6 also show that during the linear phase both drugs accumulate in the cells in the medium without glucose but with sodium azide. Thus, at 60 sec the overall cell:medium

T. Skovsgaard

Table 1

Effect of metabolic inhibitors on uptake of $[^3H]VCR$ and DNR

$[^3H]VCR$ at 1 μM and DNR at 5 μM were added at 0 time. Cellular drug content after 2 washings was determined at incubation for 60 min, as described in "Materials and Methods."

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Controla</th>
<th>Azideb</th>
<th>Iodoacetic acidc</th>
<th>Azide + iodoacetic acidc</th>
<th>Control</th>
<th>Azide</th>
<th>Iodoacetic acidc</th>
<th>Azide + iodoacetic acidc</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHR 2</td>
<td>8.55 ± 0.07d</td>
<td>8.74 ± 0.02</td>
<td>8.48 ± 0.04</td>
<td>10.05 ± 0.12</td>
<td>589 ± 4</td>
<td>601 ± 2</td>
<td>681 ± 4</td>
<td>725 ± 7</td>
</tr>
<tr>
<td>EHR 2/VCR+</td>
<td>2.16 ± 0.16</td>
<td>2.16 ± 0.04</td>
<td>4.01 ± 0.18</td>
<td>8.26 ± 0.16</td>
<td>209 ± 2</td>
<td>200 ± 4</td>
<td>393 ± 0</td>
<td>711 ± 2</td>
</tr>
<tr>
<td>EHR 2/DNR+</td>
<td>1.95 ± 0.02</td>
<td>1.94 ± 0.10</td>
<td>2.66 ± 0.06</td>
<td>6.26 ± 0.05</td>
<td>175 ± 3</td>
<td>171 ± 4</td>
<td>289 ± 6</td>
<td>631 ± 9</td>
</tr>
</tbody>
</table>

a Standard medium.

b Standard medium with 10 mM sodium azide; the cells were exposed to the poison 10 min prior to exposure to the drug.

c Standard medium with 0.2 mM iodoacetic acid; the cells were exposed to the poison 30 min prior to exposure to the drug.

d Mean ± S.E. of 3 determinations.
Mechanism of Cross-Resistance between VCR and DNA

Chart 4. Efflux of [3H]VCR induced by glucose in wild-type tumor cells. Cells were loaded with [3H]VCR by addition of 1 μM at 0 time. Experimental conditions are the same as those described in the legend to Chart 2.

Distribution ratios were calculated as 2.3 and 35 for [3H]VCR and DNR, respectively.

Table 2 shows the result of the initial rate of uptake of [3H]VCR and of DNR in the 3 tumor lines in the medium without glucose, containing 10 mM sodium azide. The rates of uptake of both compounds were significantly higher in the wild-type tumor cells than in the resistant cells; on the other hand, nearly equal results were obtained for the 2 resistant cell lines.

For clarification of whether a common specific inward transport mechanism exists for VCR or DNR, the influence of VCR on the initial rate of uptake of DNR was determined in the 3 tumor lines. Table 3 shows that, even if the concentration of VCR was 50-fold higher than that of DNR, no significant inhibition of the rate of DNR uptake could be demonstrated.

DISCUSSION

Indications of an active outward transport of DNR in cells resistant to DNR have previously been demonstrated in our laboratory (13, 27). This study demonstrates an active extrusion of DNR in cells resistant to VCR and an active extrusion of [3H]VCR in cells resistant to VCR as well as to DNR. Together, these findings indicate that an energy-dependent drug extrusion is a common mechanism of resistance to VCR and DNR.

Previous experiments indicate that the mechanism of active extrusion of DNR in cells resistant to DNR most probably attributes to a primary active transport (27). According to this concept a specific binding of the drug to a reactive site of a carrier is expected to occur at the inner surface of the membrane. In consideration of the chemical structure of VCR and DNR, no obvious similarity is visible. VCR is a dimeric periwinkle alkaloid; DNR is a glycoside.

Chart 5. Effect of sodium azide upon initial uptake of [3H]VCR in cells resistant to VCR. A cell suspension (10% v/v) was exposed to standard medium (●) or to standard medium without glucose, containing 10 mM sodium azide (○) for 10 min at 37°C. The experiment was started by transferring the cell suspension to the drug solution (37°C) during rapid stirring, forming a final cell suspension of 0.5% v/v. Serial samples of 200 μl were withdrawn at 5-sec intervals. The flux reaction was terminated by rapid injection of the cell suspension into 8 ml ice-cold Ringer's solution, and the cells were then separated by centrifugation at 2350 x g for 1 min. The cellular content after 2 washings was determined as described in "Materials and Methods."

Chart 6. Effect of sodium azide upon initial uptake of DNR in cells resistant to VCR. Five μM DNR were added at 0 time. Other experimental conditions are the same as those described in the legend to Chart 5.
composed of a tetracyclic aglycone, daunomycinone, and an amino sugar, daunosamine. The similarity could arise in the cells by structural modifications of DNR, VCR, or both. However, the experimental data on metabolism in this study and in previous studies (13, 25, 27) from this laboratory do not support significant conversion of VGA or DNR within the experimental period. Thus, most probably some parts of the 2 molecules do, from a steric point of view, look very different. The similarity could arise in the cells by structural modifications of DNA, VGA, or both.

The technical assistance of M. Knudsen, I. Kobbemagel, and J. Dussing is acknowledged. The author is indebted to Severin Olesen Larsen for statistical assistance. The technical assistance of M. Knudsen, I. Kobbemagel, and J. Dussing is gratefully acknowledged.

REFERENCES

Mechanism of Cross-Resistance between VCR and DNR

22. Poole, D. T., and Butler, T. C. Effects of Inhibitors of Glycolysis on
Mechanism of Cross-Resistance between Vincristine and Daunorubicin in Ehrlich Ascites Tumor Cells

Torben Skovsgaard

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/38/12/4722

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/38/12/4722. Click on “Request Permissions” which will take you to the Copyright Clearance Center's (CCC) Rightslink site.