ABSTRACT

The adult mouse spleen retains granulocytic progenitor cells that are capable of proliferation and maturation. In mice given cyclophosphamide, spleen weight and cell content increased. In vitro granulocyte progenitor cells increased more than 300-fold in the spleen and remained elevated 14 days following cyclophosphamide. Proliferative and nonproliferative granulocytes were increased above controls until Days 21 and 28, respectively. In splenectomized mice, blood neutrophil recovery was delayed when compared to nonsplenectomized mice following cyclophosphamide. Although marrow cell number was similar in both groups, maximum marrow granulocyte progenitor cells were 2-fold greater in nonsplenectomized animals. These studies demonstrate that the murine spleen becomes a markedly granulopoietic organ and is a major contributor to recovery of granulocytes following cyclophosphamide. Splenic granulopoiesis should be taken into account in studies which measure toxicity of various agents in murine hematopoiesis.

INTRODUCTION

The spleen is a major hematopoietic organ in the fetus (9). The adult mouse spleen retains small numbers of morphologically identifiable hematopoietic cells and is able to support increased hematopoiesis in response to greater demand such as after bleeding (1) or following endotoxin (3). Under these conditions, erythropoiesis is supported to a greater extent than is granulopoiesis (2). Although it is an organ rich in lymphocytes and phagocytic macrophages, the adult spleen contains small numbers of pluripotent hematopoietic cells (17) and also retains more differentiated CFU-C. CFU-C in the spleen have been shown to proliferate and differentiate in vitro when stimulated by CSA (10).

After administration of cyclophosphamide to mice, neutropenia occurs and is followed by neutrophilia. These changes are associated with similar changes in marrow cellularity and CFU-C content. In a previous study, increases in both the weight and CFU-C concentration of the spleen were noted in mice following cyclophosphamide, and these changes persisted after neutropenia had been corrected (16). Few reports of the effects of cytotoxic agents on hematopoiesis in the mouse have included studies of hematopoietic organs other than marrow (13, 16, 20, 25). The role of the adult mouse spleen as a granulopoietic organ, its influence on marrow recovery of granulopoiesis, and its effect on the duration and severity of neutropenia following cyclophosphamide form the basis of this report.

MATERIALS AND METHODS

C57BL X DBA/2 F1, mice bred in our laboratory from stock purchased from The Jackson Laboratory, Bar Harbor, Maine, were used in all experiments. Animals were between 8 and 15 weeks of age.

Cyclophosphamide (100 mg) with sodium chloride (45 mg) (Mead Johnson Laboratories, Evansville, Ind.) was dissolved in 5 ml preservative-free sterile water and administered (200 mg/kg) i.p. Control mice were given injections of a 0.9% NaCl solution.

Suspensions of murine spleen cells were prepared by gentle dispersion through stainless steel sieves into CMRL culture media. Marrow cell suspensions were obtained by flushing the isolated mouse humerus with CMRL. Peripheral blood was obtained by orbital sinus puncture. Cell concentrations were measured with an electronic particle counter (Model ZBI Coulter counter; Coulter Electronics, Inc., Hialeah, Fla.) and from 200 cell differential counts of Wright's-stained blood smears and 500 cell differential counts of cytocentrifuged spleen and marrow cell suspensions. The morphological features of granulocytes and their precursors in mice have been described previously (7).

Briefly, proliferative cells included myeloblasts, promyelocytes, and myelocytes, in which the nucleus has a central opening the diameter of which was less than one-half the diameter of the doughnut nucleus. Granulocytes with a wider nuclear central opening or segmented nuclei were defined as nonproliferative cells.

In vitro, growth of CFU-C from mouse spleen and marrow was measured by using the soft gel system as described by Pluznik and Sachs (21) and Bradley and Metcalf (4). Methyldextranulose (Dow Corning Corp., Midland, Mich.) was used in place of agar. Cells were suspended in 1.8% methylcellulose, containing culture medium CMRL, 15% horse serum, and 10% L-cell-conditioned medium. The combined mixture was then plated in triplicate in 1-ml volumes in culture dishes 35 x 10 mm and incubated at 37° in 7.5% CO2 for 7 days. Colonies containing more than 50 cells were counted with an inverted microscope.

RESULTS

There were marked changes in spleen weight and cell composition in mice following cyclophosphamide. Spleen...
weight decreased initially from a mean of 83 ± 12 (S.E.) mg in controls to 28 ± 3 mg on Day 4 (Chart 1A). This was followed by an increase to a peak value of 242 ± 56 mg on Day 8. Thereafter, spleen weight gradually decreased to control levels by Day 21 after cyclophosphamide. Similar changes were observed in spleen cell number, as shown in Chart 1B. The total number of spleen cells decreased from 10.0 ± 2.4 × 10⁷/spleen in control mice to 0.7 ± 0.2 × 10⁷/spleen on Day 4 following cyclophosphamide. This was followed by an increase to peak levels on Day 9 (29.6 ± 4.4 × 10⁷) after which the cell number remained elevated until Day 14. A marked increase in spleen CFU-C was also observed during this time period, as shown in Chart 1C. Few CFU-C's were detected in spleens of untreated controls (1.4 ± 0.8 × 10³/spleen). By Day 6, CFU-C were increased 100-fold to 105 ± 17 × 10³/spleen, reached a maximum value of 460 ± 140 × 10³ on Day 8, and remained significantly above control levels (p < 0.001) 14 days after cyclophosphamide. Changes in the number of morphologically identifiable spleen cells after cyclophosphamide are shown in Table 1. Proliferative granulocytes were reduced until Day 6 after cyclophosphamide; then they increased 100-fold to a maximum of 86.7 ± 13.8 × 10⁷/spleen on Day 8 and remained above control values (0.9 ± 0.1 × 10⁷/spleen) until Day 21. Nonproliferative granulocytes were also increased by Day 6, reached peak concentrations (124.7 ± 19.8 × 10⁷/spleen) on Day 8, and did not return to control levels until 28 days following cyclophosphamide. Spleen lymphocytes decreased initially to 6.5 ± 0.7 × 10⁷/spleen on Day 3 and gradually increased thereafter.

To determine the effect of splenic granulopoiesis on neutrophil recovery following cyclophosphamide, blood neutrophil concentrations were measured in mice splenectomized 4 weeks earlier and in nonsplenectomized mice following cyclophosphamide. The results are shown in Table 2. In both groups, similar levels of neutropenia were reached by Day 4 after cyclophosphamide. An earlier recovery of blood neutrophil concentration was seen in nonsple-
Marrow granulopoiesis was also studied in splenectomized and nonsplenectomized mice following cyclophosphamide, and the results are shown in Table 3. No significant difference in total marrow cell counts was detected. In nonsplenectomized mice, there was a more rapid decrease in marrow proliferative granulocytes. A nadir was reached in both groups on Day 2 following cyclophosphamide. The marrow concentration of proliferative and nonproliferative granulocytes was not significantly different in splenectomized and nonsplenectomized mice during marrow granulopoietic recovery following cyclophosphamide. However, marrow CFU-C differed considerably. In splenectomized mice, marrow CFU-C decreased to 2100 ± 200/humerus on Day 1 and increased 3-fold above controls to a maximum of 19,200 ± 4,100 on Day 4. In nonsplenectomized mice, a greater decrease in CFU-C was observed on Days 1 through 4. Thereafter, CFU-C were increased greater than 5-fold above controls to a maximum of 51,000 ± 7,500 on Day 5. Sera from splenectomized and nonsplenectomized mice given cyclophosphamide were tested for CSA in cultures of normal mouse marrow cells. Increased CSA was noted by Day 2 and remained elevated until Day 7 with no significant difference between the 2 groups.

Since peak marrow CFU-C in nonsplenectomized mice was noted at a time when spleen CFU-C rapidly increased, the influence of cellular migration on CFU-C content was studied. Following cyclophosphamide, circulating CFU-C were measured in blood collected from the inferior vena cava of splenectomized and nonsplenectomized mice. Blood CFU-C in splenectomized mice increased from 500 ± 200/μl blood on Day 4 to 6600/μl on Day 6 following cyclophosphamide. A similar increase was seen in nonsplenectomized mice, from 600 ± 100/μl on Day 4 to 5000 ± 600/μl on Day 6.

Table 3

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>NSPX(^a)</th>
<th>SPX</th>
<th>NSPX</th>
<th>SPX</th>
<th>NSPX</th>
<th>SPX</th>
<th>NSPX</th>
<th>SPX</th>
<th>NSPX</th>
<th>SPX</th>
<th>NSPX</th>
<th>SPX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.2 ± 0.2(^b)</td>
<td>2.9 ± 0.3</td>
<td>0.36 ± 0.02</td>
<td>0.71 ± 0.07</td>
<td>2.12 ± 0.13</td>
<td>1.51 ± 0.16</td>
<td>0.4 ± 0.1</td>
<td>2.1 ± 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.9 ± 0.1</td>
<td>1.2 ± 0.2</td>
<td>0.04 ± 0.01</td>
<td>0.39 ± 0.06</td>
<td>0.83 ± 0.09</td>
<td>0.70 ± 0.12</td>
<td>1.7 ± 0.2</td>
<td>3.2 ± 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.5 ± 0.1</td>
<td>0.6 ± 0.1</td>
<td>0.46 ± 0.09</td>
<td>0.56 ± 0.09</td>
<td>0.02 ± 0.01</td>
<td>0.01 ± 0.01</td>
<td>4.7 ± 0.7</td>
<td>6.8 ± 1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.0 ± 0.1</td>
<td>1.6 ± 0.2</td>
<td>0.99 ± 0.09</td>
<td>1.54 ± 0.19</td>
<td>0.01 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td>8.3 ± 0.7</td>
<td>19.2 ± 4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.9 ± 0.3</td>
<td>3.5 ± 0.3</td>
<td>2.23 ± 0.23</td>
<td>2.69 ± 0.23</td>
<td>0.51 ± 0.05</td>
<td>0.56 ± 0.05</td>
<td>51.0 ± 7.5</td>
<td>9.0 ± 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7.9 ± 0.9</td>
<td>8.9 ± 1.4</td>
<td>1.41 ± 0.16</td>
<td>2.63 ± 0.41</td>
<td>6.43 ± 0.73</td>
<td>6.23 ± 0.98</td>
<td>4.7 ± 1.7</td>
<td>3.3 ± 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8.3 ± 0.8</td>
<td>6.8 ± 0.3</td>
<td>0.88 ± 0.08</td>
<td>0.63 ± 0.03</td>
<td>7.14 ± 0.69</td>
<td>6.00 ± 0.26</td>
<td>4.0 ± 0.4</td>
<td>6.9 ± 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) SPX, splenectomized; NSPX, nonsplenectomized.

\(^b\) Mean ± S.E.

DISCUSSION

These studies demonstrate that the spleen becomes markedly granulopoietic and contributes to the recovery of blood neutrophils in mice following cyclophosphamide. Spleen weight, cell content, and number of CFU-C increased following cyclophosphamide and remained elevated for 14 days. Proliferative and nonproliferative granulocytes were increased above controls until Days 21 and 28, respectively. In splenectomized mice, the level of neutropenia following cyclophosphamide was similar to that in nonsplenectomized mice. However, neutropenia was of shorter duration, and neutrophil concentrations were significantly greater on Days 5, 6, and 7 in nonsplenectomized mice. Marrow cell number was similar in both groups, but maximum marrow CFU-C was 2-fold greater in nonsplenectomized animals.

The murine spleen is an active hematopoietic organ in fetal and neonatal life and may become hematopoietic in adult mice following a variety of stresses which increase demand for blood cell production (3). The adult spleen contains a number of different cells capable of influencing granulopoiesis. Macrophages are a major source of CSA that is necessary for the growth of granulocytes and mononuclear cells in vitro (8, 11, 15). Thymus-derived splenic lymphocytes have also been demonstrated to release CSA (24). In the present study, serum CSA was increased to a similar degree in both splenectomized and nonsplenectomized mice following cyclophosphamide, suggesting that the splenic contribution to CSA release did not affect neutrophil recovery or marrow CFU-C content. Previous studies have suggested that the adult murine spleen retains stem cells, both pluripotent hematopoietic stem cells (CFU-S) and more differentiated CFU-C, in an apparent noncycling state (18). Recent studies using liquid cultures have demonstrated that the spleen CFU-C can be induced to proliferate and mature in the presence of CSA (10). In addition, CFU-C have been demonstrated to circulate in the blood of normal animals and humans (6, 22) and are increased during recovery from myelosuppressive therapy (5, 23). Since CFU-C were found to be increased in the...
blood of both splenectomized and nonsplenectomized mice following cyclophosphamide, it is unclear to what extent splenic granulopoiesis is due to activation of preexisting noncycling progenitor cells in the spleen or migration of cells to the spleen. Splenic CFU-C may also enter the blood, and this could account for the greater peak marrow CFU-C content observed in nonsplenectomized mice following cyclophosphamide.

Previous studies in humans (14, 19) and the mouse (12) have provided conflicting data of the effect of splenectomy on marrow tolerance to myelosuppressive therapy. The present study indicates that the mouse spleen is an important granulopoietic organ following cyclophosphamide, that it influences blood neutrophil recovery, and that granulopoiesis persists for a time after both marrow and blood have appeared to recover. These observations demonstrate that splenic granulopoiesis should be taken into account in studies which measure toxicity of various agents on murine hematopoiesis.

ACKNOWLEDGMENTS

The authors thank Joan Allalunis Turner and Robert P. Kim for their excellent technical assistance.

REFERENCES

Splenic Granulopoiesis in Mice following Administration of Cyclophosphamide

Robert A. Joyce, Olivier Hartmann and Paul A. Chervenick

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/39/1/215

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.