Inhibition of Human Melanoma Colony Formation by Retinoids

Frank L. Meyskens, Jr.,2 and Sydney E. Salmon

Section of Hematology and Oncology, Department of Internal Medicine and The Cancer Center, University of Arizona, Tucson, Arizona 85724

ABSTRACT
We studied the effects of retinoids on the in vitro survival of melanoma colony-forming cells in biopsies obtained from ten patients with metastatic melanoma. The results indicate that specific retinoids reduce the ability of fresh human melanoma cells to form colonies in soft agar. The retinoids studied had differential effects on the survival of clonogenic melanoma cells, and these effects vary from patient to patient. The data provide support for the clinical trial of selected retinoids in metastatic melanoma. The results indicate that specific retinoids reduce the ability of fresh human melanoma patients with metastatic melanoma. The results indicate that specific retinoids reduce the ability of fresh human melanoma

INTRODUCTION
Vitamin A has several important functions for normal differentiation of epithelial cells (6, 25, 26). Retinoids (vitamin A and its synthetic analogs) can also prevent the development of epithelial cancer in several organ sites in experimental animals by modifying preneoplastic states during the latent period of cancer development (25). Inhibitory noncytotoxic effects of β- all-trans-RA3 on the proliferation of murine melanoma in vitro have been noted (13, 15). Short-term in vitro treatment of hamster and mouse fibroblasts with retinol results in marked changes in glycolipid synthesis patterns (17). These studies in animal systems suggest that retinoids have important biochemical and biological effects on cells. Two years ago, our research group reported a relatively simple soft-agar technique for direct cultivation of human tumor stem cells from a variety of neoplasms (8-10, 12), an approach which has recently been modified: Dose-Response Curves. Retinol was tested in 2 patients, with different retinoids, but in no instance was survival of melanoma colony-forming cells reduced to less than 20% of the control. The effect of the different retinoids varied from patient to patient. Dose-response curves for patients A through E are presented in Chart 1.

RESULTS
The effects of the retinoids on melanoma colony formation varied with the patient and the type of retinoid. Marked inhibition of melanoma colony formation was noted in some patients with different retinoids, but in no instance was survival of melanoma colony-forming cells reduced to less than 20% of the control. The effect of the different retinoids varied from patient to patient. Dose-response curves for patients A through E are presented in Chart 1.

Effects of Retinoids on Human Melanoma Colony Formation: Dose-Response Curves. Retinol was tested in 2 patients, and survival of melanoma colony formation was reduced 70% (A) and 80% (E) at a concentration of 10−8 M, but a further

1 This investigation was supported by NIH Grants CA 17094 and CA 21839.
2 To whom requests for reprints should be addressed.
3 The abbreviation used is: RA, retinoic acid.

Received February 20, 1979; accepted July 12, 1979.

OCTOBER 1979
Molarity of Retinola (10^-N)

Chart 1. Effect of retinoids on human melanoma colony formation. •, cis-RA (RO-43780); ○, β-all-trans-RA; △, aromatic RA ethyl ester analog (R-10-9359); and Δ, retinol.

decrease in survival was not achieved at higher concentrations.

β-All-trans-RA was tested in 4 patients, and 3 different types of dose-response curves were observed over the dose range tested. In 2 patients, survival of melanoma colonies was reduced at a concentration of 10^-9 M (Patient A, 30%; Patient D, 60%), but a plateau occurred where no further decrease in survival was achieved at higher concentrations. In one patient (Patient C), a dose-dependent effect was evident, and survival of melanoma colonies was reduced 60% at the highest concentration (10^-5 M) used. In Patient D, a dose dependence at lower concentrations and plateau at a higher concentration was evident.

13-cis-RA was tested in all 5 patients, and 3 different types of survival curves were seen. In 3 patients (Patient A, B, and C), no reduction (20%) in survival was observed. In one patient (Patient E), no reduction in survival was seen except at the highest concentration tested (10^-5 M, 40% reduction in survival). However, in one patient (Patient D), survival was reduced at 10^-9 M, but survival was not further reduced at higher concentrations.

Aromatic RA ethyl ester analog was tested in 5 patients, and 2 different types of effects on melanoma colony formation were seen. In 2 patients (Patients B and C), no response was seen. In 3 patients, melanoma colony survival was reduced at low concentrations, but survival was not further reduced at higher concentrations (Patient A, 30 to 40% decrease; Patient D, 30 to 50% decrease; Patient E, 75 to 80% decrease).

Thus, in the multiple concentrations studied, 4 different types of general responses were noted: no response at any concentration; a response only at high concentrations; a concentration dose-dependent effect; and a response at low concentrations with no further reduction in tumor colony formation with increasing molarity of the retinoid. Additionally, the specific retinoid causing one or more of these responses varied from patient to patient.

DISCUSSION

The studies reported here indicate that retinoids can reduce the ability of fresh human melanoma cells to form colonies in soft agar and that differential sensitivities are expressed. This observation indicates that melanoma colony formation is heterogeneous with respect to responsiveness to retinoids. Whether these effects on the cells capable of forming melanoma colonies are working through the same or different mechanisms, or on different groups of cells has yet to be established. We have yet to study effects of combinations of these agents, which may partially answer this question.

Table 1

<table>
<thead>
<tr>
<th>Retinoid</th>
<th>Percentage of survival of human melanoma colony formation after retinoid exposure at 10^-5 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>Retinol</td>
</tr>
<tr>
<td>A</td>
<td>33</td>
</tr>
<tr>
<td>B</td>
<td>81</td>
</tr>
<tr>
<td>C</td>
<td>88</td>
</tr>
<tr>
<td>D</td>
<td>24</td>
</tr>
<tr>
<td>E</td>
<td>41</td>
</tr>
<tr>
<td>F</td>
<td>46</td>
</tr>
<tr>
<td>G</td>
<td>20</td>
</tr>
<tr>
<td>H</td>
<td>45</td>
</tr>
<tr>
<td>I</td>
<td>38</td>
</tr>
<tr>
<td>J</td>
<td>133</td>
</tr>
</tbody>
</table>

Mean survival: 51 ± 3.7

* Based on the available published data, this concentration of retinoid is a pharmacologically achievable level (5) and produces biological effects (18).

\[\text{Mean} \pm \text{S.D.} \]
Retinoids are not conventionally considered to be directly cytotoxic to normal or tumor cell populations (13, 15, 19, 25). Either the retinoids have cytotoxic effects on a small subpopulation of sensitive cells which have clonogenic properties, or are altering some fundamental property necessary for cells to clone in vitro. The exposure time to the retinoid is short (1 hr), which suggests that the retinoids induce a long-standing clone in vitro. The exposure time to the retinoid is short (1 hr), and find rapid and profound effects on labeled precursor incorporation into RNA and protein. * Ornithine decarboxylase, a possible regulator of RNA metabolism, has been noted to change rapidly in response to retinol (7) and conceivably could be playing an important role. Alternatively, alterations in surface proteins induced by retinoids (17) may lead to changes in cloning ability.

While the in vivo relevance of these observations remains to be established, a wide variety of retinoids are known to interact directly with diverse normal and malignant cell types (4, 19). For example, retinoids have been noted to inhibit the growth and development of certain transplantable tumors, including rat chondrosarcomas (11, 28), murine mammary adenocarcinoma (19), and murine S91 melanoma (4). Also, these agents increase host-immune responses (4), possibly acting through stimulation of T-killer cells (3, 14). Additionally, direct effects of retinoids on the in vitro proliferation of murine melanoma cell lines S91 and B16 have been noted (13, 15), which supports our direct observations on human melanoma.

In prior studies with known cytotoxic agents (e.g., melphalan, Adriamycin), our group has reported excellent correlation between in vitro sensitivity or resistance in this aggar culture assay system and clinical response in vivo (24). We have recently made similar correlative observations in melanoma patients with cytotoxic drugs (16, 21, 22). Therefore, the results of the current in vitro studies showing marked inhibitory effects of relatively low doses of selected retinoids on human melanoma colony formation provide evidence in support of initiating clinical trials of selected retinoids in patients with malignant melanoma. In view of the fact that retinoids are already on trial as chemopreventative agents in normal subjects, their use in patients with known diagnosed cancer in the adjuvant or metastatic setting appears most reasonable. Such trials would ideally be carried out in conjunction with in vitro study, so that retinoids which we would predict to have clinical activity in specific patients would be selected and the predictive capability of this assay system for retinoids could be directly tested.

ACKNOWLEDGMENTS

We thank B. Soehnlen and L. Young for excellent technical assistance and E. Erf for secretarial preparation of this manuscript.

REFERENCES

Inhibition of Human Melanoma Colony Formation by Retinoids

Frank L. Meyskens, Jr. and Sydney E. Salmon