Effect of Catechol Estrogens on Rat Mammary Tumors

Yusuf J. Abul-Hajj

College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455

ABSTRACT

The effect of 1,3,5(10)-estratriene-3,16α,17β-triol (estradiol), 1,3,5(10)-estratriene-2,3-diol-17-one (2-hydroxyestrone), and 1,3,5(10)-estratriene-2,3,17β-triol (2-hydroxyestradiol) on the growth of dimethylbenz(a)anthracene-induced mammary tumor and of R3230AC-transplantable mammary tumor was compared with that produced by estradiol benzoate treatment. Estriol showed minimal inhibition of tumor growth in dimethylbenz(a)anthracene-induced tumor and no effect on R3230AC tumor while 2-hydroxyestrone showed no effect of tumor inhibition. On the other hand, 2-hydroxyestradiol showed appreciable inhibition of tumor growth in both tumors studied. That 2-hydroxyestradiol has been found to bind to estrogen receptors in mammary tumors and is uterotropict suggests that the inhibition of tumor growth by 2-hydroxyestradiol may be similar to the mechanism of inhibition of mammary tumors by high concentrations of estradiol.

INTRODUCTION

One of the postulated reasons for the lower incidence of breast cancer in Japan, compared with that in most Western countries (9, 27), is believed to be differences in estrogen levels between the 2 populations. In support of this hypothesis, several workers have shown that the "estradiol/estrone (estradiol/estrone plus estradiol)" ratio is higher in Japanese women than in Caucasians (5, 18) and is also higher in low-risk populations (5, 22). Furthermore, support for this hypothesis was based on the following observations: (a) estradiol has minimal estrogenic effects and can act as an antagonist to the uterotropic effect of estradiol (14); (b) estradiol does not produce mammary cancer in rats in contrast to estradiol and estrone (11); (c) low incidence of DMBA-induced tumors in rats given estradiol before DMBA administration as compared with rats given DMBA alone (16); and (d) estradiol lowers the binding of estradiol to its cytoplasmic receptor (17, 30). However, there are several lines of evidence that do not support the estradiol hypothesis. The first is that estradiol has been found to be carcinogenic in mice (26), and the second is based on results obtained by Anderson et al. (2) and Clark et al. (6) who showed that estradiol is in fact an estrogen antagonist when administered chronically and has the same uterotrophic activity as estradiol. Furthermore, Deshpande et al. (8) showed no evidence that estradiol inhibited the uptake of radiolabelled estradiol in the tumors of patients with breast cancer. Finally, results obtained by Pratt and Longcope indicate no significant differences in estradiol production rates in women with previous breast cancer versus normal women (25). These new results seem to suggest that the "estradiol hypothesis" as initially conceived is no longer valid in explaining altered breast cancer risk in certain women or in defined populations.

Conversely, there is new evidence that the catechol estrogens, 2-hydroxyestrone and 2-hydroxyestradiol, may play the antiestrogen role that has been ascribed to estradiol. Reports on catechol estrogens show these to be the major metabolites in humans and animals (3, 4). These metabolites compete with estradiol for cytosol estrogen receptors of the hypothalamus and pituitary (7) suggesting a role for these compounds in the control of gonadotropin secretion within the pituitary-hypothalamic axis (10, 23, 24). On the other hand, 2-hydroxyestradiol, which competes for estrogen receptors in rat uterine tissue (19) and in DMBA-induced rat mammary tumor tissue (1) as well as causes significant nuclear receptor translocation (1), has been shown to have appreciable uterotrophic activity (1, 20).

Since 2-hydroxyestradiol can act as both an estrogen and antiestrogen, we carried out this investigation to study the effects of catechol estrogens on tumor growth responses in DMBA-induced and R3230AC-transplanted rat mammary carcinomas and to compare them with tumor growth responses obtained using estradiol and estradiol.

MATERIALS AND METHODS

Steroids. Estradiol benzoate and estriol were obtained from Sigma Chemical Co., St. Louis, Mo. Catechol estrogens were synthesized according to the procedure of Stubenrauch and Knuppen (28). The purified compounds were recrystallized and shown to be homogeneous by thin-layer chromatography. The absence of trace amounts of estradiol and estrone in the purified samples was established by contaminating the solution with [3H]estrone and estradiol, and the mixture was chromatographed on thin-layer chromatography. Recrystallization from methanol gave pure 2-hydroxyestradiol and 2-hydroxyestrone devoid of radioactivity.

DMBA Tumor Induction, Growth, and Treatment. Fifty-five-day-old female Sprague-Dawley rats (obtained from BioLabs, St. Paul, Minn.) were given 20 mg of DMBA in 1 ml of sesame oil by gastric intubation. Eighty % of the rats developed breast tumors between 5 weeks and 4 months after treatment with DMBA. Rats were palpated for tumors at weekly intervals, the size was recorded as the mean of 2 perpendicular diameters, one measured across the greatest width, and tumor surface area was plotted on a growth chart. Since it was desired that each treatment group contain about the same tumor size at the initiation of therapy, animals were divided into treatment groups after their tumors had reached the desired size range (from 6 to 8 sq cm). The average time after appearance of the tumor to initiation of therapy was 3 weeks. Treatment of all groups was continued for an additional 5 weeks. The animals were divided
into 6 treatment groups with 10 animals in each group. The following daily injections were given: Group A, 0.1 ml of corn oil (controls); Group B, 20 μg of estradiol benzoate; Group C, 100 μg of estriol; Group D, 100 μg of 2-hydroxyestradiol; Group E, 100 μg of 2-hydroxyestrone; and Group F, 20 μg of estradiol benzoate plus 100 μg of 2-hydroxyestradiol. All injections were given s.c. Mammary carcinomas were considered to be regressing if the tumor size decreased by at least 30% from the beginning to end of therapy and advancing if the tumor size increased (12).

R3230AC-transplanted Tumor and Treatment. Female Fischer 344 rats weighing 120 to 140 g received tumor transplants by sterile trochar technique. The animals were divided into 6 treatment groups with 10 animals in each group. Daily injections of vehicle and test compounds were given s.c. on Day 1 following transplantation and continued for a total of 21 days when the experiment was terminated. Injections given were: Group G, 0.1 ml of corn oil (controls); Group H, 20 μg of estradiol benzoate; Group I, 100 μg of estriol; Group J, 100 μg of 2-hydroxyestradiol; Group K, 100 μg of 2-hydroxyestrone; and Group L, 20 μg of estradiol benzoate plus 100 μg of 2-hydroxyestradiol. Rat weights were recorded on Days 1, 10, and 18, and on Day 21, all animals were killed and necropsies performed.

RESULTS

The effects of treatment with estradiol, estriol, 2-hydroxyestradiol, and 2-hydroxyestrone on the growth of DMBA-induced rat mammary carcinomas are shown in Charts 1 to 4 and Table 1. The tumors of control animals grew exponentially. Of the estradiol-treated group, 8 regressed and 2 advanced in growth similar to the control curve (Chart 1; Table 1). 2-Hydroxyestradiol treatment appeared to be about as therapeutically efficient as estradiol in that 6 tumors of 2-hydroxyestradiol-treated animals regressed while 4 continued to grow (Chart 2; Table 1). However, the number of rats with no evidence of tumors at the end of the treatment period is 5 for the estradiol-treated group and only 2 for the 2-hydroxyestradiol-treated group. Treatment with 2-hydroxyestrone (Chart 3; Table 1) showed no tumor inhibition. Treatment with estriol (Chart 4; Table 1) resulted in regression in only 3 tumors while the remaining 7 tumors advanced in growth similar to that in the control group. Furthermore, all of the regressed tumors showed the presence of tumor growth at the end of the treatment period (Table 1). When both estradiol and 2-hydroxyestradiol were administered simultaneously, results similar to those obtained by estradiol administration only were observed (Chart 5; Table 1).

Table 2 shows the results obtained from treatment with estradiol, estriol, 2-hydroxyestrone, 2-hydroxyestradiol, and estradiol plus 2-hydroxyestradiol on the growth of R3230AC-transplantable rat mammary carcinoma. A significant reduction of tumor growth was observed at a 20-μg/day dose of estradiol.
V. J. Abu-Hajj

2-HYDROXY ESTRADIOL

Chart 2. Effect of 2-hydroxyestradiol administration on DMBA tumor growth. Average weekly surface area of 10 control tumors (•), 6 regressing tumors (△), and 4 advancing tumors (□). Bars, S.E. Arrow, time when treatment was begun.

DISCUSSION

In the present study, we have presented data on the effectiveness of estradiol, 2-hydroxyestradiol, 2-hydroxyestrone, and estriol on the growth of DMBA and R3230AC tumors. High-dose estradiol benzoate administration has been found to inhibit tumor growth in both of these mammary tumors. These results are essentially similar to those obtained by other investigators on DMBA (15, 21) and R3230AC (13, 29) tumor regression following estradiol administration. In sharp contrast to these observations is the effect of estriol on the growth of mammary tumors. As can be seen from Chart 4 and Table 1, estriol administration resulted in a significant regression in only 30% of DMBA tumors with all regressing tumors showing some tumor growth at the end of the treatment period. These results are in variance with the results obtained by Lemon (16) who showed a lower incidence of DMBA-induced tumors in rats given estriol before DMBA administration as compared with rats given DMBA alone (16). However, these workers were studying the protective effects of estriol on the induction of tumors by DMBA as compared to our studies on tumor inhibition by estriol, and it is quite conceivable that different mechanisms are involved using these 2 different experimental designs. Thus, the results obtained in our study of DMBA indicate that estriol has little antitumor activity if any at all. Further support for these results is obtained from our studies on the effect of estriol on the growth of the hormone-responsive autonomous R3230AC carcinoma. Table 2 shows that estriol had no anti-tumor activity as observed from the treated/control ratio of 2-HYDROXYESTRONE (10) benzoate. The ratio of treated to control tumor weights is shown in Table 2, Column 5. Treatment with 2-hydroxyestradiol resulted in significant inhibition of tumor growth within 21 days. However, estriol and 2-hydroxyestrone administration showed very little tumor-inhibitory activity. Furthermore, the treated/control ratio obtained from administration of estradiol plus 2-hydroxyestradiol was essentially similar to that obtained by estradiol administration.

Chart 3. Effect of 2-hydroxyestrone administration on DMBA tumor growth. Average weekly surface area of control tumors (•) and 10 advancing tumors (□). Bars, S.E. Arrow, time when treatment was begun.

4884

CANCER RESEARCH VOL. 39
Effects of treatment in vivo of R3230AC-transplanted rat mammary carcinoma

CATECHOL ESTROGENS AND MAMMARY TUMORS

Chart 4. Effect of estriol administration on DMBA tumor growth. Average weekly surface area of 10 control tumors (•), 3 regressing tumors (△), and 7 advancing tumors (□). Bars, S.E. Arrow, time when treatment was begun.

Chart 5. Effect of estradiol benzoate plus 2-hydroxyestradiol administration on DMBA tumor growth. Average weekly surface area of 10 control tumors (•), 9 regressing tumors (△), and one advancing tumor (□). Bars, S.E. Arrow, time when treatment was begun.

Table 2. Effects of treatment in vivo of R3230AC-transplantable rat mammary carcinoma with estrogens

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Dose (μg/day)</th>
<th>Tumor wt (mg)</th>
<th>T/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Vehicle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Estradiol benzoate</td>
<td>20</td>
<td>0.98 ± 0.13</td>
<td>0.56</td>
</tr>
<tr>
<td>I</td>
<td>Estradiol</td>
<td>100</td>
<td>1.63 ± 0.19</td>
<td>0.94</td>
</tr>
<tr>
<td>J</td>
<td>2-Hydroxyestradiol</td>
<td>100</td>
<td>1.21 ± 0.09</td>
<td>0.70</td>
</tr>
<tr>
<td>K</td>
<td>2-Hydroxyestrone</td>
<td>100</td>
<td>1.76 ± 0.20</td>
<td>1.01</td>
</tr>
<tr>
<td>L</td>
<td>Estradiol benzoate plus 2-Hydroxyestradiol</td>
<td>100</td>
<td>0.87 ± 0.18</td>
<td>0.50</td>
</tr>
</tbody>
</table>

a Mean ± S.E. in that group as recorded on Day 21.
b Weight of tumor in treated group/weight of tumor in control group.

Our results suggest that estriol is not antiestrogenic and support other results which show that estriol is in fact a potent estrogen as determined by its uterotrophic activity (6, 19), binding to estradiol receptor, induction of tumors in mice (26), and inability to inhibit tumor growth.

In view of the controversy over the role of estriol in human breast cancer (31) and the recent results obtained on the antiestrogenic (10, 23, 24) and estrogenic activities (1, 20) of the catechol estrogens, we attempted to study the antitumor activity of 2-hydroxyestradiol and 2-hydroxyestrone in rat mammary tumors. As seen in Chart 2 and Table 1, 2-hydroxyestradiol shows a significant inhibitory effect on the growth of DMBA mammary tumors. Sixty % of the tumors regress with 2 of 6 tumors showing no sign of tumor growth at the end of the treatment period. Similarly, administration of 2-hydroxyestra-

diol to Fischer rats bearing R3230AC tumors showed remarkable inhibition of tumor growth with a treated/control ratio of 0.70 as shown in Table 2. That 2-hydroxyestradiol binds to cytosol estrogen receptors from mammary tumors and is capable of inducing translocation of receptor (1) as well as having appreciable uterotrophic activity (1, 20) suggests that 2-hydroxyestradiol may act as an estrogen agonist. Furthermore, results obtained from experiments where both estradiol and 2-hydroxyestradiol are administered simultaneously (Chart 5; Tables 1 and 2) show that 2-hydroxyestradiol has no estrogen antago-
nistic activity and are in agreement with earlier studies on receptor binding and estrogenic response (1). However, unlike 2-hydroxyestradiol, that 2-hydroxyestrone showed no inhibition in the two mammary tumors investigated supports earlier results which show that 2-hydroxyestrone cannot induce receptor translocation (1) and has no estrogenic (1, 20) or antiestrogenic activity (20).

The results obtained from this study show that 2-hydroxyestradiol, which has uterotropic activity and is capable of inducing receptor translocation, can inhibit tumor growth. Furthermore, estril, which is known to be uterotropic and also binds to estrogen receptors, shows minimal tumor regression. That full estrogenic response requires chronic administration of estriol (6) may suggest that the weak antitumor activity of estriol observed in these studies results from the insufficiently frequent administration of this short-lived estrogen agonist. These studies lead us to conclude that these compounds are estrogenic and that the antitumor activity observed in this study for estril and 2-hydroxyestradiol is very probably due to a mode of action similar to the mechanism of inhibition of human breast cancer by high concentrations of estradiol.

ACKNOWLEDGMENTS

The authors are very grateful to the Mason Research Institute for providing us with the R3230AC tumor line. The excellent technical assistance of Deborah Kolodjeski and Joan Cordes is greatly appreciated.

REFERENCES

Effect of Catechol Estrogens on Rat Mammary Tumors

Yusuf J. Abul-Hajj


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/39/12/4882

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.