Biochemical Basis for Cytotoxicity of 7,12-Dimethylbenz(a)anthracene in Rat Liver Epithelial Cells

P. T. Lyte, J. E. Tomaszewski, and A. Dipple

Chemical Carcinogenesis Program, National Cancer Institute, Frederick Cancer Research Center, Frederick, Maryland 21701

ABSTRACT

When the effects of 7,12-dimethylbenz(a)anthracene (DMBA) on normal and malignant rat liver epithelial cells were compared in a colony inhibition assay, this carcinogen showed a preferential cytotoxic action on the normal cells. In investigations of the biochemical basis of this selective toxicity, it was found that both cell lines were similarly effective in binding DMBA to DNA and that both cell lines had the capacity to metabolize this carcinogen. However, the hepatoma cells were more efficient than were the normal cells in generating very polar metabolites (not organic solvent extractable). These studies suggest that the basis of the resistance of the hepatoma cells to the toxicity induced by DMBA lies in their ability to detoxify biologically active metabolites. Several phenols were examined as possible toxic metabolites of DMBA, but these were not toxic at dose levels at which DMBA kills most of the normal cells.

INTRODUCTION

To improve the sensitivity of detection of transformed epithelial cells in vitro, we have been investigating conditions (21, 22) which would increase the percentage of transformed cells in a given population of rat liver epithelial cells in culture (20). Since the polycyclic hydrocarbon DMBA has been found to exhibit a selective cytotoxicity towards normal rodent cells in culture (11, 12, 19), we examined the effect of this carcinogen on normal rat liver epithelial cells and on hepatocellular carcinoma cells in culture. In this paper, we report the selective toxicity of DMBA for normal liver cells in vitro and the relationship between cytotoxicity, hydrocarbon metabolism, and the binding of DMBA to cellular DNA.

MATERIALS AND METHODS

Cell Lines. The previously described (20) control epithelial cell line NRL 11 derived from the liver of a 10-day-old male Wistar rat and the hepatocellular carcinoma cells, HL 5, isolated from a histologically confirmed tumor developed in the same strain of rat by feeding 4-dimethylaminoazobenzene (30) were used. These cell lines were maintained routinely as monolayers in Ham's F10 medium (18) supplemented with 10% fetal bovine serum. The cells were grown on plastic Petri dishes and incubated at 37° in humidity cabinets with a gas phase of 5% CO2 in air. The monolayers were subcultured weekly with 0.05% trypsin. These cell lines had been in culture for 120 to 150 days (subculture, 17 to 22) and stored frozen before the experiments.

Chemicals. DMBA and BF were purchased from Sigma Chemical Co., St. Louis, Mo. [G-3H]DMBA (specific radioactivity, 9 Ci/mmol) was purchased from Amersham/Searle Corp., Arlington Heights, Ill. Labeled and unlabeled DMBA were chromatographically purified as previously described (14). [G-3H]-DMBA isolated by this procedure was 99% radiochemically pure as determined by thin-layer chromatography on Eastman 6060 silica gel sheets in hexane.

Markers prepared for HPLC studies were 7-hydroxymethyl-12-methylbenz(a)anthracene, 12-hydroxymethyl-7-methylbenz(a)anthracene, 7,12-dihydroxymethylbenz(a)anthracene (2, 7), cis,5,6-dihydro-5,6-dihydroxymethylbenz(a)anthracene (9), the 5,6- and 8,9-trans dihydrodiols of DMBA (31), and 2-, 3-, and 4-hydroxy-DMBA (26). Dimethylbenz(a)anthracene,5,6-oxide was prepared according to the method of Dansette and Jerina (10) and nucleoside adducts were prepared from this, as previously described (6).

Cytotoxicity Studies. Monolayers of the cell lines were detached with trypsin, and the resultant cell suspensions were plated at a density of 20 cells/sq cm (500 cells in 5 ml medium in 60-mm dishes). After 1 day, the medium was removed, and an equal volume of either the control medium or media with different concentrations of DMBA (0.001, 0.01, 0.1, 1.0 μg/ml) was added to the cultures. DMBA was dissolved in DMSO, and the final concentration of this solvent in culture media was 0.25%. The cells were refed on the sixth day with appropriate media, fixed in methanol, and stained with Giemsa on the 11th day. The colonies were counted with an automatic colony counter (a minimum of 3 dishes/dose). The above protocol was also used for experiments with 2-, 3-, and 4-hydroxy-DMBA; with BF; and with a simultaneous treatment with BF and DMBA. The possible recovery from the toxic effects of DMBA was assessed by feeding the cells with regular culture medium after 5 days of DMBA treatment.

DNA Binding Studies. Confluent monolayers of either cell line in 150-sq cm plastic flasks were treated with a solution of [3H]DMBA in DMSO (20 μg/ml) such that the final concentration of DMBA was 0.05 μg/ml of medium, and the medium contained 0.25% DMSO. After 24 hr, the cells were harvested by trypsinization, and DNA was isolated from the cell pellets by lysis of the cells in Triton X-100 and lysis of the nuclei in 0.5% sodium dodecyl sulfate, followed by isopyknic centrifugation in cesium chloride, all as previously described (24). Binding to DNA was determined from the specific radioactivity of the DNA after deoxyribonuclease I treatment, with the value of eP for DNA being taken as 8750. DNA solutions were degraded enzymically to deoxyribonucleoside mixtures with deoxyribonuclease I, snake venom phosphodiesterase, and bacterial...
alkaline phosphatase, as described earlier (27), and chromato-
graphy on Sephadex LH-20 in a methanol-water gradient
was as described by Baird and Brookes (33).

Metabolism Studies. Cells were plated at 4×10^5/sq cm
(10^5 cells in 5 ml medium in 60-mm dishes) and maintained in
culture for 7 days. The cells were treated with $[^3H]DMBA$ on
the seventh day when the cells formed a confluent monolayer.
$[^3H]DMBA$ was dissolved in DMSO and diluted with culture
medium to give final concentrations of 0.001 μg DMBA per ml
(0.037 μCi/ml) or 0.1 μg DMBA per ml (3.7 μCi/ml). At the
time of DMBA treatment, the culture medium was removed,
and 5 ml of medium containing $[^3H]DMBA$ were added to each
dish. After further incubation at 37°C for 24 hr, the culture media
were aspirated and saved. The cells were detached with a
rubber policeman, transferred into vials using a total of 5 ml
Dulbecco’s phosphate-buffered saline (Grand Island Biological
Co., Grand Island, N. Y.), frozen, and then thawed. The culture
media and the thawed cell suspension were separately ex-
tracted with ethyl acetate (3 \times 5 ml). After drying the extracts
over MgSO$_4$, aliquots were examined by HPLC using a Spectra
Physics Modular HPLC equipped with Model 740B pumps. The
metabolic mixture was separated on a 5μm Spherisorb octa-
decyl silane column (3.2 \times 250 mm; Phase Separations, Ltd.,
Hartwell, United Kingdom) using a No. 4 concave gradient of
10 to 70% acetonitrile in water for 100 min at a flow rate of 0.8
ml/min. The UV-absorbing markers added to the mixture were
detected by continuously monitoring the column effluent at 254
nm. Radioactive metabolites were detected by liquid scintilla-
cion counting of each fraction (0.8 ml) using PCS (Amersham/
Searle Corp.).

In some experiments, the medium after extraction with ethyl
acetate was treated with β-glucuronidase (4) from either Helix
pomatia (type H-1 containing sulfatase activity) or bovine liver
(type B-10 containing almost no sulfatase activity). Ethyl ace-
tate extracts of β-glucuronidase-treated medium were analyzed
by HPLC as above.

RESULTS AND DISCUSSION

To determine the growth-inhibitory effect of DMBA on normal
epithelial rat liver cells and rat hepatoma cells in culture, the
effect of various concentrations of this carcinogen on relative
plating efficiencies for these cells was determined. At concen-
trations greater than 0.01 μg/ml, DMBA dramatically re-
duced survival of normal cells (NRL 11), whereas, even at 1.0
μg/ml, it only marginally inhibited growth of the hepatoma cell
line (HL 5) (Table 1). The inhibitory effect seemed to be
cytotoxic rather than cytostatic because recovery of the normal
cells after removal of DMBA from the culture medium was not
observed. However, the cytotoxicity was abrogated by coin-
cubation of NRL 11 cells with BF (Table 1). Since this com-
pound inhibits the metabolism of DMBA (13), it is clear that the
cytotoxic action of DMBA was mediated by its metabolism in
the NRL 11 cultures as it is in other cells (13). This suggests
that the resistant HL 5 cultures may differ substantially from
the NRL 11 cultures with respect to their capacity to metabolize
DMBA. Indeed, there are many reports on the metabolism of
hydrocarbons by normal liver cells (5, 8, 12, 22, 23, 28, 29),
but HTC hepatoma cells do not efficiently metabolize hydro-
carbons (5).

Since the mechanism of binding of DMBA to DNA is becom-
ing increasingly clear (see alsoRefs. 6, 14, and 25), the
conversion of DMBA to reactive derivatives in the 2 cell lines
was examined by measuring the binding of DMBA (0.05 μg/
ml) to DNA. After a 24-hr incubation period, the binding in each
cell line was similarly low, i.e., 4.1 and 5.6 μmol/mol of DNA
phosphorus for HL 5 and NRL 11, respectively. Therefore,
these cells do not behave like the sensitive and resistant cells
studied by Diamond et al. (12) where 10- to 50-fold greater
binding to the DNA of sensitive cells was observed. Moreover,
chromatographic analysis of the DMBA-nucleoside adducts
formed in these liver cells (Chart 1) revealed no qualitative
differences between the 2 cell lines, each yielding DMBA
nucleoside adducts similar to those previously found in mouse
and hamster fibroblasts which arise from the 1,2,3,4-ring diol-
edipoxide of DMBA (25). It does not seem likely, that the basis
for the selective toxicity of DMBA for these 2 cell lines lies in
the metabolism involved in DNA binding.

Therefore, a more detailed study of the metabolic products
formed in these cells was undertaken. The general approach
followed was that ethyl acetate extracts of medium from con-
fluent cultures which had been incubated for 24 hr with $[^3H]$-
DMBA were examined by HPLC, as illustrated in Chart 2 for
DMBA (0.001 μg/ml dose). Markers which cochromato-
graphed with radioactive peaks were DMBA itself (I), the trans-
8,9-dihydrodiol of DMBA (2), 7-hydroxymethyl-12-methyl-
benz(a)anthracene (E), and the mixture of 2-hydroxy- and 3-
hydroxy-DMBA (G). Other radioactive metabolites, such as
those eluting in Fractions 49 and 57 in Chart 2, remain uniden-
tified. The aqueous phases from the ethyl acetate extractions
were then treated with β-glucuronidase. This treatment was
followed by further extraction with ethyl acetate. Chromato-
graphic examination of these extracts (illustrated in Chart 3 for
NRL 11 cultures exposed to DMBA, 0.1 μg/ml) show that β
-glucuronidase treatment of the aqueous phases released sub-
stantial amounts of radioactivity which coeluted with the mix-
ture of 2-hydroxy- and 3-hydroxy-DMBA as found by Baird et
al. (4) in studies with hamster embryo cells. These findings did
not vary substantially with the sulfatase content of the β-glu-

OMBA Cytotoxicity in Cultured Rat Liver Cells

Chart 1. Chromatography on Sephadex LH-20 eluted with a methanol-water gradient of deoxyribonucleoside mixtures from DNA (3) of normal rat liver hepatocytes, NRL 11 (A), and of rat hepatoma cells, HL 5 (B), each exposed to [3H]DMBA (0.05 µg/ml) for 24 hr. Arrow at 340 ml, position of elution of an added marker of 4-(p-nitrobenzyl)pyridine, arrows at 495 and 540 ml, position of elution of the UV-absorbing nucleoside adducts from the K-region oxide (6).

curonidase preparations, indicating that little conjugation with sulfate occurs in either cell line. (The radioactivity remaining in the aqueous phase after this enzymatic treatment could represent very polar metabolites or other conjugates such as glutathione conjugates). Similar extractions and analyses of the radioactivity left within the cells were also undertaken, and a summary of the quantitative findings from these experiments for cells exposed to [3H]DMBA (0.1 µg/ml) are summarized in Table 2. Similar studies at the lower dose of DMBA showed that less DMBA was left unmetabolized. Nevertheless, the overall differences between the 2 cell lines were similar to those summarized in Table 2.

In the sensitive NRL 11 cultures, more DMBA is recovered unmetabolized than in HL 5 cultures, and there are correspondingly greater total amounts of metabolites recovered from the HL 5 cultures. Although the initial extraction of the media with ethyl acetate yields greater amounts of organic-soluble metabolites from the NRL 11 cultures, there are considerably greater amounts of nonextractable metabolites in the HL 5 cultures. Indeed, this latter represents the most notable difference in metabolism between the 2 cell lines. For example, although similar total yields of phenols are obtained in both cases, a greater fraction of these are conjugated in the HL 5 cultures (i.e., released into the organic phase only after β-glucuronidase treatment).

These observations suggested a possible basis for the selective toxicity observed, i.e., that toxic metabolites are more efficiently conjugated or otherwise detoxified in the resistant HL 5 cultures. This possibility was investigated by examining

Chart 2. HPLC of ethyl acetate-extractable DMBA metabolites released into the media after treatment of normal (a) and malignant (b) rat liver epithelial cells with [3H]DMBA (0.001 µg/ml) for 24 hr. Samples were chromatographed as described in “Materials and Methods.” Lettered arrow, UV-absorbing standards added to the radioactive metabolite mixture: A, trans-5,6-dihydro-5,6-dihydroxydimethylbenz(a)anthracene; B, trans-8,9-dihydro-8,9-dihydroxydimethylbenz(a)anthracene; C, 7,12-dihydroxymethylbenz(a)anthracene; D, cis-5,6-dihydro-5,6-dihydroxydimethylbenz(a)anthracene; E, 7-hydroxymethyl-12-methylbenz(a)anthracene; F, 12-hydroxyethyl-7-methylbenz(a)anthracene; G, 2- and 3-hydroxy-DMBA; H, 4-hydroxy-DMBA; I, DMBA.

Chart 3. HPLC of β-glucuronidase-released [3H]DMBA metabolites. The ethyl acetate-extracted medium from normal rat liver epithelial cells treated with [3H]DMBA (0.1 µg/ml) was treated with β-glucuronidase as described in “Materials and Methods” and reextracted with ethyl acetate. Lettered arrows, same standards as in Chart 2.
P. T. lype et al.

Percentage of total radioactivity found in various fractions after incubation for 24 hr with \(^{14}\text{H} \text{ DMBA} \) (0.1 \(\mu \text{g/ml} \))

Cells and media were separately extracted with ethyl acetate (Extraction 1), the aqueous phase was treated with \(\beta \)-glucuronidase and extracted with ethyl acetate again (Extraction 2), and the extracts were examined by HPLC, as described under "Material and Methods." The percentage of total radioactivity found under various peaks in chromatograms is given.

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Procedure</th>
<th>(H_2O) phase</th>
<th>8,9-Diol</th>
<th>7-ChOH</th>
<th>Phenols</th>
<th>DMBA</th>
<th>Total unidentified</th>
<th>(H_2O) phase</th>
<th>8,9-Diol</th>
<th>7-ChOH</th>
<th>Phenols</th>
<th>DMBA</th>
<th>Total unidentified</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRL 11</td>
<td>Extraction 1</td>
<td>0.6</td>
<td>0.2</td>
<td>0.8</td>
<td>2.5</td>
<td>1.8</td>
<td>9.9</td>
<td>1.7</td>
<td>5.3</td>
<td>26.3</td>
<td>19.0</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extraction 2</td>
<td>0.9</td>
<td>0.0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.0</td>
<td>0.4</td>
<td>14.8</td>
<td>0.0</td>
<td>0.2</td>
<td>9.3</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>HL 5</td>
<td>Extraction 1</td>
<td>0.6</td>
<td>0.1</td>
<td>0.7</td>
<td>1.2</td>
<td>1.4</td>
<td>5.8</td>
<td>0.6</td>
<td>1.9</td>
<td>10.0</td>
<td>12.7</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extraction 2</td>
<td>1.7</td>
<td>0.0</td>
<td>0.2</td>
<td>0.6</td>
<td>0.0</td>
<td>0.7</td>
<td>31.7</td>
<td>0.0</td>
<td>1.2</td>
<td>15.5</td>
<td>0.0</td>
<td>13.4</td>
</tr>
</tbody>
</table>

\(a \) 8,9-Diol, trans-8,9-dihydro-8,9-dihydroxy-7,12-dimethylbenz(a)anthracene; 7-ChOH, 7-hydroxy-12-methyl benz(a)anthracene.

\(b \) Total unidentified, radioactivity throughout the chromatograms not eluting with markers available (see charts).

The toxicity of the phenols available to us (i.e., 2-, 3-, and 4-hydroxy-DMBA) in both cell lines (Table 3). Although the NRL 11 cultures showed some slight indication of greater sensitivity to the toxic effects of 3-hydroxydimethylbenz(a)anthracene, none of the phenols approached the toxicity exhibited by DMBA itself (Table 1). It could be argued that the effect of metabolic generation of these metabolites within the cell cannot be accurately reproduced by their addition to culture media, but these findings (Table 3) do not indicate that the toxicity of DMBA is directly mediated by these phenolic metabolites.

These studies demonstrate that DMBA exhibits a selective cytotoxic action towards normal rat liver epithelial cells and could therefore be used as a selective pressure immediately prior to the assay of the hepatoma cells. However, the hope that the metabolite(s) responsible for this biological effect might be identified was not realized. The rather limited cytotoxicity exhibited by the DMBA phenols was somewhat surprising since 3-hydroxybenzo(a)pyrene is fairly toxic in several cell lines (15), and Diamond (11), citing unpublished observations, has reported that 4-hydroxy-DMBA is similarly cytotoxic. However, the benzo(a)pyrene studies involved doses of an order of magnitude greater than those used in the present study, and even so, at the low end of the dose range the phenol was less toxic than benzo(a)pyrene in normal hamster cells.

It is of interest to compare the findings herein with earlier studies of hydrocarbon toxicity in cultured mammalian cells. Andrianov et al. (1) initially reported that sensitivity to benzo(a)pyrene increased with capacity for metabolism of this carcinogen, and Diamond et al. (12) found that sensitivity of various cells to DMBA was related to their capacities to bind DMBA to cellular macromolecules. Binding to cellular constituents, which requires metabolism of the hydrocarbon, is seemingly a better indicator of sensitivity to toxicity than is the ability to metabolize the hydrocarbon because Diamond (11) noted 2 cell lines which were resistant to both DMBA and benzo(a)-pyrene but were able to efficiently metabolize these hydrocarbons to water-soluble derivatives. Since we found comparable levels of binding to DNA in sensitive and resistant cells, these results are not consistent with a generalization relating toxicity to binding to DNA unless there are subtle quantitative differences in product distributions or large differences in repair capacity in the 2 cell lines studied.

At present, the cellular target for toxic action of DMBA has yet to be defined and could well be one of the cellular macromolecules not examined in this study such as RNA or protein. It does seem likely, however, that some toxic metabolites of DMBA is produced in these cells, and that the hepatoma cells which are more efficient in converting DMBA to water-soluble derivatives are simply detoxifying this metabolite through further metabolism or conjugation more effectively than do the normal cells. This is in concert with recent studies by Gentil et al. (16) who report that in hamster, rat, and rabbit embryonic cells DMBA-induced cytotoxicity is inversely related to the conversion of metabolized DMBA to water-soluble derivatives.

ACKNOWLEDGMENTS

Excellent technical assistance was provided by Al Herring, Carol Pontzer, and Erika Schultz.

REFERENCES

DMBA Cytotoxicity in Cultured Rat Liver Cells

Biochemical Basis for Cytotoxicity of 7,12-Dimethylbenz(a)anthracene in Rat Liver Epithelial Cells

P. T. Iype, J. E. Tomaszewski and A. Dipple

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/39/12/4925

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.