Suppression and Immunotherapy of the Guinea Pig Line 10 Hepatocarcinoma Mediated by Heat-killed Disrupted Mycobacterium bovis Strain Bacillus Calmette-Guérin

Percy Minden and Herbert L. Mathews

National Jewish Hospital and Research Center, Denver, Colorado 80206

ABSTRACT

Heat-killed Mycobacterium bovis strain Bacillus Calmette-Guérin cells were sonically disrupted, and their antitumor effects against the line 10 hepatocarcinoma in strain 2 guinea pigs were evaluated. When injected together with viable line 10 cells, there was complete suppression of tumor growth. Growth of tumor was also suppressed when line 10 cells were injected contralaterally at the same time as the vaccine mixture. Multiple intratumor injections of sufficient disrupted M. bovis strain B. Calmette-Guérin were therapeutically effective against 74% of 7-day-old tumors and against 40% of 14-day-old tumors. Surviving animals were usually resistant to subsequent rechallenges with line 10 cells but not to syngeneic L2C leukemia cells. By means of a competitive radioimmunoassay, antigenic determinants were detected that were expressed by disrupted but not by intact bacteria.

INTRODUCTION

Viable BCG* cells have been shown to be effective for treatment of the line 10 hepatocarcinoma in strain 2 guinea pigs when injected directly into existing tumors. Metastases in neighboring lymph nodes were also eradicated, and treated animals were resistant to subsequent challenges of line 10 cells (2, 17, 21). Subcellular components of BCG were similarly effective when administered together with oil droplets and trehalose dimycolate (18). Recently, it was shown that multiple intratumor injections of sufficient disrupted M. bovis strain B. Calmette-Guérin were therapeutically effective against 74% of 7-day-old tumors and against 40% of 14-day-old tumors. Surviving animals were usually resistant to subsequent rechallenges with line 10 cells but not to syngeneic L2C leukemia cells. By means of a competitive radioimmunoassay, antigenic determinants were detected that were expressed by disrupted but not by intact bacteria.

MATERIALS AND METHODS

BCG. BCG (Glaxo) was obtained from the culture collection of this institution and grown as previously described (12, 13). The bacteria were killed by inspissation at 80° for 40 min and washed with sterile pyrogen-free water. Suspensions of the killed washed mycobacteria were sonically treated until by microscopic examination greater than 95% were disrupted. This took 60 to 90 min. This material is referred to as BCG sonicate. Portions of the sonically disrupted material were subjected to ultracentrifugation for 2 hr at 200,000 × g. The resulting supernatant fluid is referred to as BCG-S, and its characteristics have been described (1).

Animals. Male and female strain 2 guinea pigs weighing 350 g or more were obtained from the breeding colonies of the Frederick Cancer Research Center and from this institution. New Zealand White rabbits were used as a source of rabbit sera.

Tumors. The diethylnitrosamine-induced line 10 hepatocarcinoma of strain 2 guinea pigs was maintained in ascites form. Line 10 cells used in these experiments were of transplant generations 6 to 15. Injections of 10^6 viable ascites line 10 cells intradermally into strain 2 guinea pigs invariably cause growing tumors and death of recipients within 60 to 90 days (17). L2C leukemia cells (Ia positive) were provided by Dr. A. Cooper, Tufts University School of Medicine, Boston, Mass. Injections of 3 × 10^6 L2C cells intradermally into normal animals result in fatal leukemias in 2 to 3 weeks; L2C-immune animals resist this challenge (8).

Sera. Rabbits received inoculations of BCG sonicate in incomplete Freund's adjuvant as previously described, and their antisera are referred to as anti-BCG (14).

Measurement of Antibodies. BCG-S was labeled with [125]I as previously described (14). [125]I-labeled BCG-S was diluted so that the cpm and nitrogen concentrations in 0.1 ml were 10,000 to 15,000 and 0.01 μg nitrogen, respectively. The nitrogen content of unlabeled and radiolabeled antigens was determined by an automated micro-Kjeldahl method (7). The capacity of anti-BCG to bind radiolabeled antigens was tested by reacting dilutions of antisera with [125]I-labeled BCG-S (1:5). Dilutions of antisera were in BB (11). Radiolabeled antigen-antibody complexes were then precipitated with anti-rabbit IgG prepared in goats. Results are expressed as cpm in resulting precipitates. In inhibition experiments, 0.1 ml of antisera was
preincubated overnight with 0.1 ml of BB, BCG sonicate, or suspensions of intact heat-killed BCG. 125I-labeled BCG-S was then added, and binding capacities of sera were determined as previously described (14). Percentage of inhibition was calculated as follows:

\[
\frac{cpm \text{ in precipitates after preincubation}}{cpm \text{ in precipitates after preincubation with buffer}} \times 100
\]

RESULTS

Suppression of Growth of the Line 10 Hepatocarcinoma by BCG Sonicates. Strain 2 guinea pigs received injections intradermally into their left flanks with 10^6 line 10 cells suspended with 220 μg of nitrogen of BCG sonicate in volumes of 0.3 ml. After the line 10 cells were mixed with the sonicate, viability by trypan blue dye exclusion was 90 to 95%. In most animals, there was slight induration at the injection sites which disappeared within 3 days. In all the animals tested, there was complete tumor suppression (Table 1). When rechallenged with 10^6 line 10 cells 60 days after the beginning of the experiment, no tumors developed. In one experiment, BCG sonicate was injected into the left flanks, and 10^5 line 10 cells were injected separately into the right flanks. Tumors grew on the right flanks, which indicated that close contact of the sonicate with tumor cells was required for suppression to occur. In another experiment, the vaccine effect of the BCG sonicate:line 10 cell mixture was studied. A group of animals received intradermal injections of the BCG tumor vaccine on one flank and line 10 cells alone on the opposite flank on the same day. In 4 of the 5 animals, there was no tumor growth on either side. When the 4 animals were rechallenged intradermally with line 10 cells alone about 60 days after the beginning of the experiment, all demonstrated delayed cutaneous hypersensitivity reactions to the line 10 cells, and 3 of the 4 did not develop tumors (Table 1).

Therapeutic Effect of Multiple Intraleisional Injections of BCG Sonicate. Experiments were performed to test whether the BCG sonicate could influence growth of existing line 10 tumors. Other studies in which similar protocols were used have shown that microscopic metastases within regional nodes are present within 6 days after the intradermal injection of 10^6 cells (17, 21). Guinea pigs were given intradermal inoculations of 10^6 line 10 cells, and on Day 7, when tumor diameters were approximately 10 mm, lesions were infiltrated with BCG sonicate in 0.3-ml volumes. Intraleional injections were given 3 times on Days 7, 14, and 21.

Following intraleional injections, the tumor papules slowly increased in size, the largest diameter noted being 20 mm. Small areas of ulceration appeared on the tumor surface, but in most instances after the third injection on Day 21, the papules gradually diminished in size, completely disappearing between Days 25 and 40. Of the 23 animals treated with multiple injections of 130 to 220 μg of nitrogen sonicate, there was complete regression in 17 (74%) (Table 2). In some cured animals, scar tissue remained at the tumor site. Sixty days after the onset of the experiments, 15 animals were rechallenged with line 10 cells alone. They all developed delayed cutaneous hypersensitivity reactions, and 13 (87%) were completely resistant to this challenge. Tumor regression was related to the amount of sonicate injected. Single intraleional injections of BCG sonicate (220 μg of nitrogen) into 7-day tumors resulted in eradication of a tumor in only 1 of 6 animals so tested. In another experiment, tumors were allowed to develop for 14 days. These lesions were then treated as above with 3 weekly injections of BCG sonicate. In 4, there was complete tumor regression, and 2 of these resisted a subsequent rechallenge with line 10 cells alone. Animals not completely resistant to rechallenge had prolonged latent periods before tumors were evident, and survival time was considerably increased compared to unprotected controls. Twelve of the survivors were then challenged with 3×10^5 L2C cells, and all developed fatal leukemias.

Comparison of the Capacity of Dead Intact BCG and of BCG Sonicates to Inhibit the Binding of 125I-labeled BCG-S by Anti-BCG. Because disrupted BCG had in vivo antitumor effects and because dead intact BCG did not (3, 5, 17), experiments were carried out to see if differences in the antigenic expression of these 2 BCG preparations could be de-

Table 1

Suppression of line 10 hepatocarcinoma by sonicate of heat-killed BCG

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of animals tumor free/no. treated</th>
<th>Rechallenge* (No. of animals tumor free/no. challenged)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^5 Line 10 cells and BCG sonicate</td>
<td>5/5 (100)*</td>
<td>4/4 (100)</td>
</tr>
<tr>
<td>10^5 Line 10 cells and BCG sonicate in contralateral flanks</td>
<td>0/4 (0)</td>
<td>0/5 (0)</td>
</tr>
<tr>
<td>Line 10 cell BCG sonicate vaccine and line 10 cells alone in contralateral flanks</td>
<td>4/5 (80)</td>
<td>3/4 (75)</td>
</tr>
<tr>
<td>10^5 Line 10 cells alone</td>
<td>0/5 (0)</td>
<td></td>
</tr>
</tbody>
</table>

* Animals surviving initial treatment were rechallenged intradermally with line 10 cells alone on the opposite flank after about 2 months and observed for at least 60 days.

Table 2

Therapeutic effect of multiple intraleisional injections of sonicate of heat-killed BCG

<table>
<thead>
<tr>
<th>Age of tumor treated</th>
<th>Dose of BCG sonicate (μg nitrogen)</th>
<th>No. of animals tumor free/no. treated</th>
<th>Rechallenge* (No. of animals tumor free/no. challenged)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 days*</td>
<td>10</td>
<td>0/8 (0)*</td>
<td>2/2 (100)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2/6 (33)</td>
<td>2/2 (100)</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>4/6 (67)</td>
<td>4/4 (100)</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>13/17 (71)</td>
<td>9/11 (82)</td>
</tr>
<tr>
<td>Total (130 or 220 μg nitrogen)</td>
<td>17/23 (74)</td>
<td>13/15 (87)</td>
<td></td>
</tr>
<tr>
<td>Controls (untreated)</td>
<td>4/10 (40)</td>
<td>0/12 (0)</td>
<td>1/4 (25)</td>
</tr>
</tbody>
</table>

* Most animals surviving the treatment were rechallenged with 10^5 line 10 cells alone after about 2 months and were observed for at least 60 days.

SEPTEMBER 1980

3215

Downloaded from cancerres.aacrjournals.org on April 20, 2017. © 1980 American Association for Cancer Research.
tected. Sera from rabbits that had been immunized with the BCG sonicates were diluted 1:5, and 0.1-ml aliquots were incubated with BB, dilutions of suspensions of dead intact BCG, or BCG sonicates. The sonicates tested consisted of equivalent numbers of intact BCG. Concentrations of the sonicated and intact BCG in these experiments were adjusted so that the dry weights of each preparation were the same, 35 mg/ml. As shown in Chart 1, 0.5 ml of sonicate inhibited the reaction between 125I-labeled BCG-S and anti-BCG by 64%, whereas an equivalent amount of intact BCG did so by only 34%. Smaller amounts of BCG or sonicate inhibited this reaction to a lesser degree, but disrupted BCG in the sonicates was always more effective.

DISCUSSION

The experiments described above demonstrated that sonically disrupted BCG could suppress growth of the line 10 tumor when injected together with viable tumor cells. In addition, when sufficient BCG sonicates were injected, there was complete tumor regression in 17 of 23 animals with existing 7-day-old tumors and in 4 of 10 animals with 14-day-old tumors. Using similar protocols, microscopic metastases have been demonstrated in neighboring lymph nodes within 6 days after injection of tumor cells (17, 21). Recovered animals were generally resistant to subsequent challenges with line 10 cells alone but not to the syngeneic L2C tumor. Therapeutic effectiveness was almost identical with those reported following treatment of this tumor with viable BCG or with subcellular bacterial components administered with oil droplets and trehalose dimycolate (17, 18).

As previously reported, single or multiple intralymphatic injections of various numbers of intact heat-killed BCG do not affect tumor growth (3, 5, 17). In a competitive inhibition assay, there were differences in antigenic expression between intact and disrupted BCG preparations in that antigens expressed by disrupted BCG were not detected in intact killed BCG. The antitumor effects of disrupted BCG may thus be due to antigenic determinants which are not optimally expressed in vivo on the surfaces of dead intact BCG. It is known that BCG shares antigens with the line 10 tumor (4, 6, 10, 14). Antigenic determinants exposed by the disruption of BCG, including those shared by BCG and line 10 cells, could have been important for tumor rejection and may have contributed to the antitumor effects of metabolically active viable BCG. In vivo multiplication of BCG organisms is required for effective immunization against tuberculosis, and it has also been considered to be essential for the antitumor effects of BCG (9). However, antigenic stimulation by preparations of dead BCG may occur without the need for multiplication in vivo (2). This is particularly probable when, as in this study, disrupted BCG cells are administered by multiple injections or, as in other studies, when bacterial components are injected suspended in oil droplets resulting in a persistent source of antigenic stimulation (19).

The mechanism(s) by which BCG influences the growth of tumors and renders many animals specifically resistant to rechallenge is not known (2, 15, 20). Recently, small amounts of BCG-derived peptidic substances combined with oil and various adjuvants have been shown to cause regression of the line 10 tumor (19). Results of the present study raise the possibility that antigens expressed by metabolically active BCG and by disrupted BCG (but not by inappropriately exposed antigens in dead intact BCG) may be of significance.

Viable BCG is currently used for the treatment of a variety of tumors. If disrupted BCG is found to be similarly effective against other tumors, then it may merit consideration as a satisfactory substitute for viable BCG in order to obviate the disadvantages of immunotherapy with viable bacteria.

ACKNOWLEDGMENTS

We gratefully acknowledge the expert technical assistance of Donald Petty. We thank Dr. J. K. McClatchy for advice and encouragement.

REFERENCES

Suppression and Immunotherapy of the Guinea Pig Line 10 Hepatocarcinoma Mediated by Heat-killed Disrupted Mycobacterium bovis Strain Bacillus Calmette-Guérin

Percy Minden and Herbert L. Mathews

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/40/9/3214

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.