Cell-mediated Immune Reactions in Three Patients with Malignant Lymphoproliferative Diseases in Remission and Abnormally High Epstein-Barr Virus Antibody Titers

Maria Grazia Masucci,2 Robert Szigeti,3 Ingemar Ernberg, Magnus Björkholm, Håkan Mellstedt, Gertrude Henle, Werner Henle, Gary Pearson, Giuseppe Masucci, Erik Svedmyr, Bo Johansson, and George Klein

Department of Tumor Biology, Karolinska Institutet, S 104 01 Stockholm 60, Sweden [M. G. M., R. S., I. E., G. M., E. S., G. K.]; Department of Medicine, Danderyd’s Hospital, S-182 88 Danderyd, Sweden [M. B.]; Radihemmet [H. M., E. S., B. J.] and Department of Radiobiology [H. M.], Karolinska Hospital, S 104 01 Stockholm 60, Sweden; The Joseph Stokes, Jr., Research Institute, The Children’s Hospital of Philadelphia, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 [G. H., W. H.]; and Mayo Clinic, Section of Microbiology, Rochester, Minnesota 55901 [G. P.]

Abstract

Two patients with Hodgkin’s disease in remission and one chronic lymphatic leukemia patient with extraordinarily high anti-Epstein-Barr virus (EBV) (viral capsid antigen) antibody titers (>10,000) were selected to study a spectrum of cell-mediated immune responses, including natural killer, interferon-boosted killer, antibody-dependent lymphocytotoxicity, and T-cell-mediated reactions. The purpose was to compare these reactions in patients with immunosuppression and a high EBV load who can hold their EBV-carrying cells under control with the corresponding reactions in patients with EBV-carrying lymphoproliferative disease. In contrast to the latter group, the three patients of the present study showed a less profound and less general suppression of the immune responses. Multiple effector mechanisms probably safeguard against the proliferation of EBV-transformed B-cells. Clinically manifest EBV-carrying lymphoproliferative disease occurs only in very severe immunodeficiencies effecting multiple effectors.

Introduction

In certain immunosuppressive conditions, striking changes in response to EBV can occur (2, 16, 17; for review, see Ref. 12). The most frequently recorded change is an increase in antibody levels to the antigens associated with the viral cycle, VCA and EA, while there is either no increase or a decrease and even a lack of antibodies to EBNA.

Whatever the mechanism leading to these changes, the results strongly suggest that the controls that regulate antibody production against the viral antigens are fundamentally different from those that regulate the production of anti-EBNA. Conceivably, different effectors are responsible for maintaining the level of EBNA-releasing cells (i.e., EBV-transformed cells with a proliferative potential that are not engaged in a viral cycle) and of cells that are in the viral cycle itself, with synthesis and release of EA and VCA. Noteworthy is that NK sensitivity of EBV-carrying cells increases markedly when cells enter the viral cycle (3).

In spite of the elevated antibody titers that suggest a high load of virus and virally infected (transformed) cells, most patients in the categories so far mentioned can still control the proliferation of their EBV-carrying cells, since they are not characterized by any clinically evident lymphoproliferative disease induced by EBV. This situation must be distinguished from a variety of recently identified immunodeficient patients who develop more or less malignant proliferations of EBV-carrying cells. They include fatal infectious mononucleosis, chronic infectious mononucleosis, phenotypes of the X-linked lymphoproliferative syndrome, “immunoblastic sarcomas” in renal transplant recipients, and malignant lymphoproliferative disease in ataxia telangiectasia (7, 36, 39).

A detailed analysis of the immune effector mechanisms that keep the proliferation of EBV-transformed B-lymphocytes under control is of great interest, both for the understanding of normal surveillance mechanisms and for the study of the EBV-associated proliferative diseases. Since EBV is harbored by B lymphocytes, themselves a component of the immune system, such studies may elucidate important interactions of networks within the immune system.

As a first step towards such studies, we have analyzed a variety of cell-mediated immune reactions towards EBV-transformed cells and EBV antigens in 3 immunologically compromised patients: 2 with HD and one with CLL. The 2 HD patients were free of clinically detectable tumors and the CLL patient was in partial remission at the time of the study. All 3 patients had extraordinarily high antibody levels against VCA and EA, whereas antibodies to EBNA were not elevated. They also showed defects in the lymphocyte functions.

Materials and Methods

Donors. Fifty-mI volumes of heparinized blood were obtained from patients and EBV-seropositive and -seronegative healthy controls.

1 This research was supported (in part) by Contract N01 CP 33316 from the Division of Cancer Cause and Prevention, National Cancer Institute, Contract N01 CP 33372, National Cancer Institute, NIH, USPHS, the Swedish Cancer Society, and the Cancer Society in Stockholm.

3 Recipient of the Guest Scholarship of the Swedish Institute.

4 The abbreviations used are: EBV, Epstein-Barr virus; VCA, viral capsid antigen; EA, early antigen; EBNA, Epstein-Barr virus-determined nuclear antigen; NK, natural killer (killing); HD, Hodgkin’s disease; CLL, chronic lymphatic leukemia; R, diffuse component of the early antigen complex; P, restricted component of the early antigen complex; RPMI 1640, Roswell Park Memorial Institute Tissue Culture Medium 1640; PPD, purified protein derivative; LMI, leukocyte migration inhibition; FCS, fetal calf serum; PHA, phytohemagglutinin; LCL, lymphoblastoid cell line; IFN, interferon; ADCC, antibody-dependent lymphocytotoxicity; IAK, interferon-activated killing.

Received November 20, 1980; accepted April 21, 1981.

© 1981 American Association for Cancer Research.
Three patients, A. W., L. G., and A. E. (see "Case Reports"), who developed high antibody titers against EBV VCA were selected for the study. Four bleedings were performed over a 5-month period. Antibody titers against VCA, EA, and EBNA were obtained repeatedly before and again at least twice after initiation of the present study.

EBV Antibody Tests. IgG, IgA, and IgM antibodies to EBV VCA and to D or R were titrated by the indirect immunofluorescence techniques as described (8, 13, 32). Antibodies to EBNA were measured by anticomplement immunofluorescence (11, 37).

Spontaneous Mitogen- and Antigen-induced DNA Synthesis. The method was described in detail previously (15). Lymphocytes were purified from defibrinated venous blood by sedimentation in gelatin. After ingestion of carbonyl iron, phagocytic cells were removed with a magnet. For enumeration of T-lymphocytes (18), residual RBCs were removed by sedimentation through a Ficoll-isopaque gradient. Lymphocytes (10⁷/ml) were suspended in RPMI 1640 with 15% heat-inactivated pooled human AB serum. Spontaneous lymphocyte DNA synthesis detected by the incorporation of [³H]thymidine was measured during the first day of culture. Mitogen (pokeweed mitogen and concanavalin A) or antigen (PPD) stimulation was measured on the third day of culture.

Skin Tests. These tests were performed as described before (15). Briefly, 0.1 ml PPD of tuberculin (Statens Seruminstitut, Copenhagen, Denmark) was injected intradermally on the volar surface of the right forearm. Skin reaction was evaluated 48 hr later by measuring the crossed diameters of induration and erythema. An induration of 6-mm diameter or more was considered positive. Collection of lymphocytes for in vitro studies always preceded skin testing.

LMI. The direct agarose microdroplet assay was carried out according to McCoy et al. (26), with minor modifications. Twenty × 10⁶ washed buffy coat leukocytes were mixed with 135 µl nutrient agarose medium, containing an equal volume of 2× RPMI 1640 supplemented with 20% FCS (Grand Island Biological Co., Springfield, Va.) and 0.4% agarose. Two-µl droplets of the suspension were placed into migration chambers (Sterilin, Teddington, England). After solidification of the droplets, the chambers were filled with medium (control) or with medium supplemented either with 1 µg purified PHA (Wellcome, Dartford, England) or with the optimal concentrations of the appropriate EBV antigen-containing extracts, as described previously (41). The chambers were covered and placed in a humidified 5% CO₂ atmosphere at 37°C. After 18 to 24 hr, the migration areas were projected and measured as described by Weese et al. (43) and a migration index was calculated as follows:

\[
\text{Migration index} = \frac{\text{mean of triplicates in the presence of antigen}}{\text{mean of control triplicates}}
\]

A migration index value of less than 1.0 indicates LMI.

Cell extracts were prepared from the cell lines listed in Table 1. Cells were grown in RPMI 1640 with 10% heat-inactivated FCS and antibiotics and harvested weekly for antigen preparation. Partially purified EBNA was prepared and tested as described previously (24, 41).

The induction of B95-1 cells for the production of VCA and EA was carried out with n-butyrate (3 mM concentration; 72 hr) as described (19). Induction resulted in 27 to 46% EA- and 10 to 30% VCA-positive cells.

Viral Transformation and Outgrowth Inhibition Test. Cell supernatants from the virus producer line B95-8 (29) were used as a source of transforming virus. Supernatants used contained 2 × 10⁶ infectious units, as measured by EBNA induction in Ramos cells (21). Non-T-lymphocytes (10⁵) were incubated with 1 ml undiluted virus preparation for 1 hr at 37°C. Excess virus was removed, and the cells were washed once with tissue culture medium after the incubation period. Outgrowth inhibition was assayed according to a modification of the methods described by Thorley-Lawson et al. (42) and Moss et al. (30). The infected cells were reconstituted with T-cells and incubated in bottles or microplates as described above. Some infected B-cells were incubated without T-cells in small Falcon tubes (5 ml; Falcon Plastics, Los Angeles, Calif.) to allow development of cell lines to be used in autologous cytotoxicity experiments.

For the outgrowth inhibition experiments, heparinized blood was separated on Ficoll-isopaque and on nylon wool. The cells recovered after passage through nylon were highly enriched in T-cells. The B-cell-enriched nylon-adherent cells were recovered by incubating the columns in 100% FCS for 30 min as described previously (44). Following infection with B95-8 virus, the B-cells were reconstituted with the T-cells at a 9:1 cell:T-cell ratio. The reconstituted mixture (0.2 ml), at concentrations of 2.5 × 10⁶/ml, 0.5 × 10⁶/ml, and 0.2 × 10⁶/ml, was placed in flat-bottomed microwells (10 wells/dilution). Growth was evaluated every 3 to 7 days by the following score: +, single blasts; ++, groups of 3 to 4 blasts; ++++, large clumps with blasts growing out of the clumps; +++++, overgrowth; −, no growth or blasts.

An average result of one + will be represented in the figures as 25% outgrowth (75% inhibition), an average of 4 + will be represented as 100% outgrowth (0% inhibition). As controls, we used B-cells infected alone (100% outgrowth after 14 days of culture) and uninfected B-cells mixed with T-cells (0% outgrowth after 14 days of culture).

Parallel bottles were prepared containing infected B-cells plus T-cells (1:9 ratio), 10⁶ cells/ml in 10 ml. These bottles were fed every 4 to 7 days. Living cells, surface immunoglobulin-positive cells, and sheep erythrocyte-rosetting cells were counted at regular intervals. On the 14th day of culture, T-lymphocytes were separated by sheep erythrocyte rosetting and Ficoll-isopaque sedimentation and used for cytotoxicity testing.

Cytotoxicity Test. Fresh lymphocytes (after Ficoll-isopaque sedimentation and macrophage depletion) and T-lymphocytes obtained after 14 days of culture with autologous EBV-infected B-cells were used as effectors. Cytotoxic activity was tested in a 6-hr ⁵¹Cr release assay as described previously (1). The targets included K562 cells, an EBV-negative erythroid leukemia line that is known to be highly sensitive to NK cell-mediated killing, Dauidi cells, an EBV-carrying Burkitt lymphoma line, and autologous and allogeneic LCLs established by EBV infection of normal lymphocytes in vitro.

IFN Treatment of Effector Lymphocytes. Parallel lymphocyte samples were incubated for 3 hr in 1 ml RPMI 1640 with 10% FCS. One thousand units of IFN were added to one aliquot. The IFN (kindly provided by Dr. G. Bodo) was prepared from Namalwa cells, induced by Sendai virus. The preparation contained 2.2 × 10⁶ units/mg protein. It had been purified by Bodo as described previously (4).

Marker Studies. To detect T-cells, sheep erythrocyte rosetting was performed according to Jondal et al. (18). For isolation of erythrocyte-rosetting cells, the suspension was layered on Ficoll-isopaque and spun at 500 × g for 20 min. The pellet was collected, and the

Table 1

<table>
<thead>
<tr>
<th>Designation</th>
<th>Origin</th>
<th>EBV genome</th>
<th>EBNA</th>
<th>EA</th>
<th>VCA</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BJAB</td>
<td>Burkitt-like lymphoma</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>22</td>
</tr>
<tr>
<td>BJAB/B95-8</td>
<td>EBV-converted subline of BJAB (B95-8 subtrain)</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>6</td>
</tr>
<tr>
<td>Ramos</td>
<td>American Burkitt lymphoma</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>21</td>
</tr>
<tr>
<td>P3HR-1</td>
<td>African Burkitt lymphoma</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>14</td>
</tr>
<tr>
<td>Raji</td>
<td>African Burkitt lymphoma</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>5</td>
</tr>
</tbody>
</table>

Cell-mediated Immunity and EBV Antibodies in 3 Patients
erythrocytes were lysed by 6 sec of treatment with distilled water. Surface immunoglobulin-positive cells were detected by direct immunofluorescence with rabbit anti-human polyvalent immunoglobulin (Dako, Copenhagen, Denmark).

ADCC. For the ADCC assay, Raji cells were grown in RPMI 1640 plus 10% heat-inactivated (56° for 30 min) FCS. EBV from P3HR-1 cultures, provided by the Division of Cancer Cause and Prevention, National Cancer Institute, was kept at −70° until used. To induce the ADCC-sensitive membrane antigen, 5 × 10⁶ Raji cells were incubated with 1.0 ml of an appropriate virus dilution at 37° for 1 hr. The cells were then resuspended in RPMI 1640 plus 10% FCS to a concentration of 1 × 10⁶ cells/ml. The infected cultures were then incubated at 37° for 24 hr. Cultures harvested at this time usually contained 30 to 50% membrane antigen-positive cells as reported previously (33).

To prepare effector cells, blood from individual baboons was collected by venipuncture into a syringe containing heparin. The blood was diluted 1:3 in growth medium, and the leukocyte fraction was separated on Ficoll-Hypaque gradients (LSM solution; Litton Bionetics, Inc., Kensington, Md.). These lymphocytes were used routinely as effector cells in the ADCC assay. Sera were assayed for ADCC activity against ¹¹⁵⁰ labeled EBV-infected or uninfected Raji cells by using a microassay as described (34). The ratio of lymphocytes to target cells was 100 to 1. The microplates were incubated at 37° for 3 to 4 hr. Cytotoxicity for the lymphocyte-serum mixtures was calculated as reported previously (35). For calculating the ADCC, the cytotoxicity figure for lymphocytes incubated in the presence of an antibody-negative control serum was subtracted from that induced by the corresponding dilution of the test serum. The statistical significance was determined by Student’s t test. The final serum dilution showing an increase in lymphocyte cytotoxicity significant at p < 0.05 was chosen as the serum titer.

Case Reports

Patient A. W. This young girl presented in September 1966 at the age of 14 with a large progressive swelling in the left supraclavicular area. Chest roentgenogram showed moderate widening of the upper mediastinum. The diagnosis of HD was established by aspiration biopsy. Local field irradiation to the left neck and mediastinum led to the disappearance of the lymphadenomegaly. The patient remained symptom-free until June 1970 when a right supraclavicular recurrence appeared. Local ⁶⁰Co-irradiation to the neck and the axillas resulted in prompt regression. She was in remission until May 1975 when chest X-ray showed a lung lesion close to the right hilar region. Local irradiation caused regression of the lung lesion. Diagnostic laparatomy with splenectomy was performed, and no disease was observed in the spleen or in biopsy specimens from the liver and abdominal lymph nodes. Despite the negative findings, inverted Y-field irradiation was given.

A second pulmonary recurrence was found on routine examination in March 1976. She was started on combined chemotherapy with nitrogen mustard-vincristine-procarbazine-prednisone and was later changed to 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea-vincristine-procarbazine-prednisone. Chemotherapy was continued with a total of 10 courses and finished in November 1977.

In February 1978, there was progression in the lung, and the patient was given local irradiation, combined with bleomycin. She complained of fatigue at the completion of the treatment. Two months later, her previously normal liver function tests became abnormal. Two weeks later, she developed fever very abruptly. On admission to the hospital, Streptococcus pneumoniae was cultured from her blood. Treatment with benzyl penicillin resulted in prompt improvement. Computerized tomography including the liver, liver scan, and chest X-ray were normal. Needle biopsies from the liver showed no significant abnormality. The liver function gradually became normal in April 1979.

When the EBV study was performed, the patient was in complete remission and working. Electrophoresis, liver function tests, and chest X-ray were normal.

Patient L. G. A 68-year-old woman was hospitalized in June 1976 for gastroenteritis. There was a history of weight loss but not of fever or night sweats. Routine clinical examination revealed cervical, axillary, and inguinal lymphadenomegaly, which the patient had noticed for 1 year. Chest X-ray was normal. Radiogram of the abdomen showed a slightly enlarged spleen. The bone marrow was massively infiltrated with small mature lymphocytes as in CLL. Biopsy of a cervical node, on the other hand, showed diffuse infiltration of poorly differentiated lymphocytes of a type often seen in lymphocytic lymphoma. Hemoglobin was 93 g/liter with 20% reticulocytes; WBC was 22.0 × 10⁹/liter with 90.5% small mature lymphocytes. A monoclonal light chain was found in the urine. Liver function tests were normal. The disorder was classified as CLL because of the bone marrow picture and the presence of leukemia cells in the blood, although the lymph node picture was atypical.

Treatment was started in August 1976 with intermittent courses of Cyclophosphamide-Oncovin-Prednisone and later changed to Prednimustine. The WBC fell dramatically to 1.1 × 10⁹/liter. Meanwhile, the lymph nodes gradually shrank. Treatment was discontinued in November 1976. Bone marrow showed improvement but not complete remission.

In March 1978, the lymphocyte count and the peripheral lymph nodes were found to be increasing. Prednimustine treatment was reinstituted in December 1978. The patient responded again with normalization of the peripheral blood picture and shrinkage of the enlarged nodes. The treatment was stopped in July 1979, and the patient has not required any further treatment.

At the time of the EBV study, the patient was in partial remission. Mature lymphocytes dominated the bone marrow but not to the same degree as on admission. The peripheral blood picture was normal, and the lymph nodes were only slightly enlarged.

Patient A. E. A 42-year-old man admitted in March 1975 with weight loss for 6 months and fever for 1 month. A large mass was found in the right groin. Biopsy showed HD of mixed cellularity. Chest X-ray was normal. Lymphangiography revealed large paravertebral lymph nodes with abnormal structures. The liver and spleen were slightly enlarged. He was classified clinically as Stage II B.

The patient was treated with inverted Y-fields (42 Gy) from April to June 1975. The treatment resulted in improvement of his general condition.

Diagnostic splenectomy was performed in September 1975, and the spleen was found to be involved with HD whereas a liver biopsy was normal. Prophylactic mantle treatment (40 Gy) was given in October 1975.

The patient has remained free of tumor.

At the time of EBV study, chest X-ray, computerized tomography, liver scan, bone marrow, and peripheral blood cell counts were normal. The patient was working full time and felt well.

Results

EBV-specific Serology

Chart 1 shows the EBV-specific antibody spectrum and titers of the 3 patients.

The first serum from A. W. (Chart 1A) was collected 3 years after the first diagnosis of HD when she still had no antibodies to EBV. She was still EBV antibody negative 4 years later. The next serum obtained in February 1978, when the patient was 26 years old, revealed seroconversion, possibly in the recent past because the anti-EBNA titer was low (1:10). However, IgM antibodies to VCA were not detected. The titers of VCA- and D-
specific IgG and IgA antibodies, as well as anti-EBNA, rose 4- to 8-fold during the next 3 months. During this period and concomitantly with the antibody rise, the patient had an episode of hepatitis. Subsequently, a streptococcal septicemia developed. During the subsequent maintained remission, all antibody titers remained essentially constant, except for D-specific IgA which slowly disappeared.

The first available serum from L. G. (Chart 1B) was obtained at the time of diagnosis of CLL. It showed unusually high titers of IgG and IgA antibodies to VCA and D, but the anti-EBNA level was within the normal range. This serum and 2 subsequent sera reacted also in the test for IgM antibodies to VCA at a titer of 1:40 (not shown), but this reaction was due to rheumatoid factor and removed by adsorption with IgG-coated latex particles (10). After cessation of therapy, some of the antibody titers rose 2- or 4-fold, possibly with progression of the leukemia, but they declined again following therapy.

The first sera from A. E. (Chart 1C) were obtained at the time of the diagnosis of HD and towards the end of total nodal radiation therapy. The IgG antibodies to VCA rose from 1:80 to 1:320 within one month and before any treatment was started, and anti-R became detectable at a titer of 1:10. No IgA antibodies to VCA were found at this early stage, but they were present at substantial titers in the next serum collected 23 months later when the IgG antibodies to VCA, D, and R had risen to 1:5120, 1:80, and 1:320, respectively. Also, this patient developed low levels of rheumatoid factor which registered nonspecifically in the test for VCA-specific IgM antibodies. Although the patient remained free of clinical tumor more than 4 years, the antibody spectrum and titers changed very little. Because the patient had considerable titers of antibodies to both the D and R components, it was difficult to clearly differentiate between the 2 on some occasions.

ADCC

Antibody as measured by the ADCC assay varied among the 3 patients, but on repeated tests from the same patient, it was stable. The ADCC titers in the 3 serum samples collected from A. E. at 1-month intervals were all 15,360 which is considered high in this test. The titers in the 2 serum samples from L. G., also collected at 1-month intervals, were 15,360, while the ADCC titer on one serum sample from A. W. was 720 which is considered low for this test.

Tests for General Lymphocyte Reactivity

Spontaneous Mitogen- and Antigen-induced Lymphocyte DNA Synthesis. The spontaneous lymphocyte DNA synthesis was increased in Patient A. W. but essentially normal in the other 2 patients (Table 2). A more severe impairment of mitogen (pokeweed mitogen and concanavalin A)-induced lymphocyte activation was found in Patient A. E. while Patients A. W. and L. G. displayed moderate defects. The in vitro response to PPD stimulation was normal in L. G. and impaired in A. W. and A. E.
Marker Studies and PPD Skin Test. Patients A. W. and Å. E. showed no delayed skin hypersensitivity to PPD. Patient L. G. who had a normal in vitro response to PPD also showed a positive response in vivo. Relative and total T-lymphocyte counts were essentially within the normal range in all 3 patients.

Spontaneous Cytotoxic Activity

Spontaneous cytotoxic activity of blood lymphocytes was measured against the highly NK-sensitive K562 target cell line. Four tests were performed on each patient at monthly intervals (Chart 2). The normal range is indicated by the horizontal line (mean percentage of 51Cr release obtained in 20 tests performed with blood lymphocytes from 10 normal controls over the same time period) and by the parallel dotted lines (S.D.). The cytotoxic activity against K562 was largely within the normal range in all 3 patients. The low cytotoxicity obtained in the first test with L. G. cells was probably due to a dilution of the effectors by the leukemic cells present in peripheral blood (63% of the lymphocytes had surface immunoglobulin). In the following tests, nylon-passed cells were used as effectors. With the exception of one test with Å. E. cells, there was no significant variation in cytotoxic activity in any of the patients during the period of the study.

IAK

The patients' lymphocytes were also tested for cytotoxicity against the Daudi target cell, following short-term in vitro exposure to human leukocyte IFN. We have shown previously that Daudi cells are virtually insensitive to NK cells in short-term 51Cr release cytotoxicity assays (20). In 20 experiments, we have found that IFN treatment increased the cytotoxicity of blood lymphocytes from 10 normal donors against the Daudi target 8.5-fold on the average [±0.52 (S.E.)]. The results are shown in Table 3. The IFN response of A. W.'s lymphocytes was markedly depressed in all 4 tests: the mean increase, by 0.304 ± 0.08, fell more than 2 S.D. below the normal range in all 4 tests. The IFN response of A. W.'s lymphocytes (in parentheses) was performed with the total lymphocyte population after macrophage depletion. The low cytotoxic value was probably due to contamination by leukemic cells. In the following tests, nylon-passed cells were used as effectors from this patient.

Table 3

Effect of IFN treatment on lymphocyte cytotoxicity against the Daudi target cell

The relative increase in killing efficiency was calculated as the ratio between the number of effector cells required for equal cytotoxicity, untreated and after IFN pretreatment; e.g., the value of 9 means that 9 times less effector cells were needed to obtain the same degree of lysis after IFN pretreatment than before. The mean increase obtained in 20 tests with effector lymphocytes from 10 normal donors was 8.5 [±0.52 (S.E.)]. Due to the variable efficiency of the effector lymphocytes in each experiment, a certain percentage of specific 51Cr release, located in the linear part of both (IFN-treated and untreated) cytotoxic curves, was chosen as the basis for each calculation.

<table>
<thead>
<tr>
<th>Date</th>
<th>A. W.</th>
<th>Date</th>
<th>L. G.</th>
<th>Date</th>
<th>Å. E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/6/79</td>
<td>3.2</td>
<td>11/28/79</td>
<td>9.0</td>
<td>11/14/79</td>
<td>5.4</td>
</tr>
<tr>
<td>12/14/79</td>
<td>3.0</td>
<td>1/2/80</td>
<td>ND</td>
<td>12/12/79</td>
<td>5.4</td>
</tr>
<tr>
<td>1/18/80</td>
<td>3.0</td>
<td>1/30/80</td>
<td>9.0</td>
<td>1/16/80</td>
<td>3.6</td>
</tr>
<tr>
<td>3/12/80</td>
<td>3.0</td>
<td>2/27/80</td>
<td>ND</td>
<td>3/12/80</td>
<td>3.6</td>
</tr>
</tbody>
</table>

ND, not done.

LMI Tests

Previously, we (39) have described an EBV-specific LMI system, responsive to the extracts of EBV-containing cells and to EBNA, respectively. This method has been used in the present study, with particular attention to the possibility of distinguishing between the sensitization state of the patient to the EBV antigens associated with the viral cycle (EA and/or VCA), on the one hand, and to the transformation-proliferation-associated EBNA, on the other hand. As previously, LMI by PHA was used as a positive control for a general assessment of lymphocyte reactivity.

Table 1 summarizes the EBV antigen content of the cell extracts. In addition, EBNA partially purified by the method of Luka et al. (24) was also tested.

Table 4 summarizes the LMI indices for healthy seronegative and seropositive donors and for the 3 patients. Healthy seronegative donors showed no differences in LMI between EBV-negative and -positive cell lines or between EBNA and mock EBNA. The healthy seropositive donors showed significant LMI following exposure of their leukocytes to the extracts of the EBV genome-carrying cell lines and to partially purified EBNA but not to mock EBNA.

The 3 patients reacted as follows: A. W. reacted normally to PHA in one of 2 tests and weakly in the other. Buffy coat leukocytes of Å. E. responded well to 1 μg PHA per ml in 2 tests. The same was found with the T-cell-enriched buffy coat cells of L. G. (Table 4, Column A). This indicates that the lymphocytes of all 3 patients could produce LMI factor in the response to PHA, although to different degrees.

None of the leukocytes responded to cell extracts from the EBV-negative BJAB (Column B). Treatment of BJAB with n-butyrate, a powerful inducer of EBV antigens in EBV-carrying cell lines, did not change the inability of this line to induce a LMI reaction.

Extracts of the EBV genome-carrying nonproducer lines BJAB/B95-6 and the EBV producer P3HR-1 line inhibited the migration of leukocytes from EBV-seropositive but not -seronegative individuals (Columns C and D). It should be noted that BJAB/B95-6 is an in vitro EBV-converted subline of the originally negative BJAB and Ramos line (Table 1). The difference between the EBV-negative lymphoma lines and their own EBV-converted sublines is exclusively referable to the presence of the viral genome. These cells express EBNA (37) but none of the other EBV-specific antigens. Correspondingly, partially pur-
<table>
<thead>
<tr>
<th>Table 4</th>
<th>LMI tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Patients</td>
<td>Dates of experiments</td>
</tr>
<tr>
<td>Healthy seronegative donors</td>
<td></td>
</tr>
<tr>
<td>A. W.</td>
<td>12/14/79</td>
</tr>
<tr>
<td></td>
<td>1/16/80</td>
</tr>
<tr>
<td>Healthy seropositive donors</td>
<td></td>
</tr>
<tr>
<td>L. G.</td>
<td></td>
</tr>
<tr>
<td>11/28/79</td>
<td>0.56</td>
</tr>
<tr>
<td>1/30/80</td>
<td>0.85</td>
</tr>
<tr>
<td>3/26/80</td>
<td>0.91</td>
</tr>
<tr>
<td>A. E.</td>
<td></td>
</tr>
<tr>
<td>11/14/79</td>
<td>0.45</td>
</tr>
<tr>
<td>12/12/79</td>
<td>0.39</td>
</tr>
<tr>
<td>1/16/80</td>
<td>ND</td>
</tr>
</tbody>
</table>

* The migration index = mean of triplicates with antigen/mean of control triplicates.
+ The cell lines, listed in Table 1, were used at a concentration of 50 μg protein per ml.
- Prepared from Ramos.
+ Prepared from Raji.
* Mean ± S.E.
+ Numbers in parentheses, number of donors.
+ The ratio of the granulocytes in the buffy coat was only 5%, insufficient to detect any migration.
+ Withuffy coat cells, containing 19% granulocytes.
* After reconstitution of the original buffy coat (see Footnote h) with autologous T-cell-enriched (nylon wool-passed) population in 2:1 ratio.
+ ND, not done.
1fified EBNA (Column G) induced significant LMI where lymphocytes from healthy seropositive but not seronegative donors were tested whereas mock EBNA was inert (Column F) (40).

n-Butyrate is known to induce the synthesis of EA and VCA in a considerable proportion of P3HR-1 cells (23). Nevertheless, extracts of butyrate-induced P3HR-1 cells had no greater LMI effect than those of noninduced P3HR-1 cells or of the nonproducer cells on the migration of leukocytes from healthy seropositives (Column E). Since the leukocytes of these donors show a good response to EBNA and since EBNA is present in all these cell lines, this is not surprising, however.

Of the 3 patients, A. W. showed no response to the extracts of EBV-carrying lines (except butyrate-induced P3HR-1) or EBNA. Thus, with the exception of the significant response to the induced cells, the LMI pattern of this patient corresponded to that of seronegatives, in spite of her extraordinarily high EBV antibody titers (Chart 1A). This was already the case in the first experiment, where the lymphocytes responded normally in PHA. Therefore, the findings indicated a specific defect in the lymphocyte-mediated EBV antigen response of this patient. The fact that the patient did respond to the EA-VCA-enriched butyrate-induced cell extracts in both tests suggested that her response was mainly or exclusively defective in relation to EBNA. This would also fit with her antibody titers, since the latter showed an extraordinary elevation of the response to VCA and a high response to EA, D in particular, whereas the response to EBNA was more within the normal range.

The LMI test with cells from the CLL patient, L. G., was complicated by a low percentage of the migrating granulocytes in the peripheral blood and the diluting effect of the B-cell leukemia cells in the first and second test. In the third test, a reconstituted buffy coat was used with a nylon-passed T-cell-enriched population to obtain a larger fraction of responding cells. This procedure did not influence the reactivity in normal seropositive donors (data not shown). With the reconstituted buffy coat, L. G. responded to the EBV genome-carrying extracts and to the EBNA preparation essentially like a normal donor. The third patient, Å. E., showed a normal response to the extracts of all EBV-carrying lines and to EBNA.

Outgrowth Inhibition

Moss et al. (30, 31) have shown that T-lymphocytes of EBV-seropositive but not -seronegative individuals can inhibit the outgrowth of EBV-transformed autologous LCLs of B-cell derivation. Aspects of this assay are discussed by Rickinson et al. (38) elsewhere in this issue. In a further attempt to define the possible effects of EBV-specific T-cell functions in the 3 patients, we used an outgrowth inhibition test, modified after the method of Moss et al. Briefly, the ability of the patients' T-lymphocytes to inhibit the outgrowth of their own autologous EBV-transformed LCLs was measured in parallel with corresponding tests on normal EBV-seropositive and -seronegative controls. The percentage of inhibition as compared to controls obtained in 2 to 3 experiments performed with each patient are shown in Chart 3. The EBV-seropositive controls showed more than 50% inhibition after 14 days of culture. EBV-seronegative donors gave no or only weak inhibition in 9 of 12 tests and a clear inhibition in 3 of 12 tests. Whether this is real or reflects some technical artifact must be left open at this time. The fact remains that the average outgrowth inhibition was 58% in seropositive and 12% in the seronegative control group.
cytotoxic activity against K562 and autologous and allogeneic LCLs, passed in vitro for less than 6 months. Chart 5 shows the cytotoxic activity of T-cells derived from the 3 patients, each compared with one EBV-seropositive and one EBV-seronegative control, tested in parallel. In spite of the considerable variability in repeated tests with the cells of the same donor, the EBV-seropositive donors had the highest cytotoxic activity in each experiment, in accordance with the data on T-cell proliferation. Some cytotoxicity was also generated against autologous and allogeneic LCLs in the culture derived from the EBV-seronegative donors and from Patients A, E, and L. G. In contrast, lymphocytes of Patient A, W. showed no or only very low cytotoxicity after cocultivation. This is in line with the insensitivity of the lymphocytes from this patient to IFN boosting, described in an earlier section.

Table 5
Lymphocytotoxicity against autologous LCLs with untreated (NK) and IFN-pretreated (IAK) effectors

<table>
<thead>
<tr>
<th>Donors</th>
<th>NK</th>
<th>IAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBV seropositive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. S.</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Y. T.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D. J.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. R.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EBV seronegative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. E.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>L. S.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K. T.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. W.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L. G.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A. E.</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Discussion

Table 6 summarizes the cell-mediated immunity responses of the 3 patients. A. W. showed the most consistent cellular impairment, including the IFN-boosted NK test, LMI with non-producer and EBNA extracts, and T-cell proliferation and outgrowth inhibition tests in coculture. Weak or no cytotoxicity was generated, in the coculture, against autologous and allogeneic LCLs. The patient had also the lowest ADCC antibody titers.

The other 2 patients showed essentially normal responsiveness in most tests. However, lymphocyte DNA synthesis after stimulation by mitogens was moderately impaired as was the IFN-boosted NK test and T-cell proliferation in coculture from A, E. and low generation of cytotoxicity after cocultivation with EBV-infected B-cells for L. G. and A. E.

A. W., who had failed to respond to the LMI effect of EBV-carrying nonproducer extracts and of EBNA and thus behaved like a seronegative rather than a seropositive individual in this test, showed a good response to the butyrate-induced P3HR-1 cell extract, enriched in EA and VCA antigens, associated with the viral cycle. This corroborates the finding that immunosuppressed patients often show depressed or deficient antibody production against EBNA, in parallel with high antibody levels to EA and VCA (12). It supports the notion that cell-mediated immune responses must function normally, in order to provide the immune system with appropriate stimulus for sensitization against EBNA (9). The same critical requirement apparently does not apply for sensitization and antibody production against EA and VCA. This may be related to the fact that EBNA-carrying cells are latently infected viable cells with a proliferative potential. Their normal control may require

Chart 4. Contrasting patterns of T (sheep erythrocyte-rosetting) and B (surface immunoglobulin-positive) cell proliferation in cultures derived from EBV-seropositive and EBV-seronegative donors and the 3 patients. T-Lymphocytes were cocultured with autologous EBV-infected B-cells in bottles as described in "Materials and Methods." The number of surface immunoglobulin-positive cells and sheep RBC-rosetting lymphocytes was determined at different times from the beginning of the cultures. Survival figures indicate the percentage of lymphocytes recovered from the bottles at the end of the cultivation period in relation to the input. O, D, A, percentage of sheep RBC-rosetting cells in the cultures of EBV-positive (O) and EBV-negative (D) donors and the 3 patients (A); •, •, •, percentage of surface immunoglobulin-positive cells in the cultures of EBV-positive (O) and EBV-negative (D) donors and the 3 patients (A); EBV+, EBV positive; EBV-, EBV negative.

Chart 5. Cytotoxic activity of T-lymphocytes recovered from the bottles after 14 days of cocultivation with autologous EBV-infected B-cells. One representative experiment is shown for each patient, tested in parallel with one EBV-seropositive and one EBV-seronegative control. T-Lymphocytes were separated by erythrocyte rosetting and Ficoll-Hypaque sedimentation and used as effectors in a 4-hr 51Cr release assay at a 25:1 effector:target ratio. □, K562 target; ◇, LCL autologous to the EBV seropositive donor; ◆, LCL autologous to the EBV-seronegative donor; I, LCL autologous to the patient; EBV+, EBV seropositive; EBV-, EBV seronegative.
the full cooperation of the various relevant compartments within the immune system, including both NK and T-cells. Interestingly, the ADCC antibody response was also low in this patient and moderate or high in the 2 other patients with relatively normal cell-mediated immune responses. This suggests that the ADCC antibody response may also be T-cell dependent. In the LMI assay, the same unresponsiveness to the extracts of EBV-carrying nonproducer cells and to EBNA was found in patients in the acute phase of infectious mononucleosis and 2 cases of chronic infectious mononucleosis.

In all these cases, the EA-VCA-enriched extracts inhibited leukocyte migration. The only difference between the mononucleosis patients and A. W. was the fact that none of the mononucleosis patients tested had any detectable anti-EBNA antibodies, whereas A. W. was anti-EBNA positive.

All 3 patients were chosen on the basis of their extraordinarily high anti-VCA titers, from among a material of more than 1000 lymphoma and CLL patients in long-maintained remission. At certain times, they all reached the excessively high anti-VCA (IgG) titer of 5,120 to 20,480. Less than 2% of the patients ever developed antibody titers of this magnitude. As discussed elsewhere in detail (12), EBV titers of this magnitude are indicators of a pronounced immunosuppression. Immunosuppression was also reflected by the cell-mediated immunity test, although most mechanisms tested were only moderately suppressed even in the most clearly affected patients. Apparently, sufficient function is preserved to prevent the proliferation of the EBV-carrying cells.

Elsewhere in this issue, we present evidence (27) to show that patients with chronic infectious mononucleosis and with the X-linked lymphoproliferative syndrome who often fail to control the proliferation of their EBV-carrying cells have severe impairment of both their NK and their T-cell function. The patients with the X-linked lymphoproliferative syndrome in particular also have severe defects in their EBV-related antibody production.

Taken together, the evidence suggests that the impact of the ubiquitous transforming and potentially oncogenic virus, EBV, has selected the human host, in the course of a long-standing symbiosis, for multiple effector control against the proliferation of the transformed cells. Only in a severe immunodeficiency that depresses multiple components of the system does the proliferation progress uncontrolled. Clearly, it is important to define those compartments in this multicomponent system that bear the major responsibility, qualitatively or quantitatively, for what is normally a watertight control mechanism.

Acknowledgments
We give thanks to Sheila Kelly, Marie Adams, Margret Wahlström, Linda van der Waal, and Kent Andersson for skillful technical assistance.

References
13. Henle, W., Henle, G., and Horwitz, C. A. Epstein-Barr virus-specific diag-
16. Johanson, B., Killander, D., Holm, G., Mellstedt, H., Henie, G., Henie, W.,
Klein, G., and Söderberg, G. Epstein-Barr virus (EBV)-associated antibody
patterns in relation to the deficiency of cell-mediated immunity in patients
prevalence of antibodies to EBV early antigen in ataxia telangiectasia.
18. Jondal, M., Holm, G., and Wigzell, H. Surface markers and human T and B
lymphocytes. I. A large population of lymphocytes forming non-immune
19. Kallin, B., Luka, J., and Klein, G. Immunological characterization of EBV-
associated early and late antigens in n-butyrate-treated P3HR-1 cells. J.
20. Klein, E., Masucci, M. G., Berthold, W., and Blazar, B. Lymphocyte mediated
cytotoxicity towards virus induced tumor cells: natural and activated killer
1197, 1980.
EBV-genome negative cell line established from an American Burkitt-lym-
phoma: receptor characteristics, EBV-infectability and permanent conver-
sion into EBV-positive sublines by in vitro infection. Intervirology, 5: 319–
334, 1976.
22. Klein, G., Lindahl, T., Jondal, M., Leibold, W., Menezes, J., Nilsson, K.,
and Sundström, C. Continuous lymphoid cell lines with characteristics of B cells
(bone marrow derived) lacking the Epstein-Barr virus genome and derived
3286, 1974.
23. Luka, J., Kallin, B., and Klein, G. Induction of the Epstein-Barr (EBV) cycle
24. Luka, J., Lindahl, T., and Klein, G. Purification of the Epstein-Barr virus-
determined nuclear antigen (EBNA) from EBV-transformed human lymphoid
25. Luka, J., Lindahl, T., and Klein, G. Disappearance of the NK effect after
explantation of lymphocytes and generation of similar non-specific
cytotoxicity correlated to the level of blastogenesis in activated cultures. J.
26. Masucci, M. G., Masucci, G., Klein, E., and Berthold, W. Interferon induced
cytotoxicity of human lymphocytes. In: S. Serou and C. Rosenfeld (eds.),
International Symposium on New Trends in Human Immunology and Cancer
27. Masucci, M. G., Szigeti, R., Embreg, I., Masucci, G., Klein, G., Chesses, J.,
Siefert, C., Lie, S., Giomatin, A., Buuanc, L., Henie, W., Henie, G., Pearson,
G., Sakamoto, K., and Purtilo, D. T. Cellular immune defects to Epstein-Barr
28. McCoy, J. L., Dean, J. H., and Herberman, R. Human cell-mediated immunity
to tuberculosis, as assayed by the agarose microdroplet leukocyte migration
29. Miller, G., and Lipman, M. Release of infectious Epstein-Barr virus by
immunity to Epstein-Barr virus in man. I. Complete regression of virus-
induced transformation in cultures of seropositive donor leukocytes. Int. J.
immunity to Epstein-Barr virus in man. III. Activation of cytotoxic T cells
32. Nikoskelainen, J., Leikola, J., and Kiemoi, E. IgM antibody specific for
Epstein-Barr virus infectious mononucleosis without heterophil antibodies.
33. Pearson, G. R., Henie, G., and Henie, W. Production of antigens associated
with Epstein-Barr virus in experimentally infected lymphoblastoid cell lines.
34. Pearson, G., Johanson, B., and Klein, G. Antibody-dependent cellular
cytotoxicity against Epstein-Barr virus-associated antigens in African pa-
Antibody responses to membrane antigens in monkeys infected with her-
36. Purtilo, D. T., Sakamoto, K., Saemundsen, A. K., Sullivan, J. L., Synnerholm,
A. C., Anvret, M., Pritchard, J., Sloper, C., Seft, C., Pincott, J. Pachman, L.
Rich, K., Cruzi, F., Cornet, J., Collina, R., Barnes, N., Knight, J., Sundstedt,
B., and Klein, G. Documentation of Epstein-Barr virus infection in immuno-
deficient patients with life-threatening lymphoproliferative diseases by clini-
cal, virological, and immunopathological studies. Cancer Res., 41: 4226–
4238, 1981.
37. Reedman, B. M., and Klein, G. Cellular localization of an Epstein-Barr virus
(EBV)-associated complement-fixing antigen in producer and non-producer
38. Rickinson, A. B., Moss, D. J., Wallace, L. E., Rowe, M., Mlako, I. S., Epstein,
39. Saemundsen, A. K., Purtilo, D. T., Sakamoto, K., Sullivan, J. L., Synnerholm,
A. C., Hanto, D., Simmons, R., Anvret, M., Collins, R. D., and Klein, G.
Documentation of Epstein-Barr virus infection in immunodeficient patients
with life-threatening lymphoproliferative diseases by Epstein-Barr virus com-
plementary RNA/DNA and viral DNA/DNA hybridization. Cancer Res., 41:
40. Szigeti, R., Luka, J., and Klein, G. Leukocyte migration inhibition studies
with Epstein-Barr virus (EBV)-determined nuclear antigen EBNA) in relation
41. Szigeti, R., Timar, L., and Revesz, T. Leukocyte migration inhibition with
Epstein-Barr virus negative and positive cell extracts. Allergy, 35: 97–101,
1980.
42. Thorley-Lawson, D. A., Chess, L., and Strominger, J. L. Suppression of in
vitro Epstein-Barr virus infection, a new role for adult human T-lymphocytes.
43. Wesche, J. L., McCoy, J. L., Dean, J. H., Ortaido, J. R., Brok, K. R., and
Herberman, R. Technical modifications of the human agaarse microdroplet
leukocyte migration inhibition assay. J. Immunol. Methods, 24: 363–370,
1980.
44. Yefenof, Y., Bakacs, T., Einhorn, L., Ernberg, I., and Klein, G. Epstein-Barr
virus (EBV) receptors, complement receptors and EBV-infectability of dif-
ferent lymphocyte fractions of human peripheral blood. I. Complement receptor
distribution and complement binding by separated lymphocyte subpopula-
Cell-mediated Immune Reactions in Three Patients with Malignant Lymphoproliferative Diseases in Remission and Abnormally High Epstein-Barr Virus Antibody Titers

Maria Grazia Masucci, Robert Szigeti, Ingemar Ernberg, et al.