brings you current approaches to cancer treatment...

ANTIVIRAL CHEMOTHERAPY

Design of Inhibitors of Viral Functions

EDITED BY K. K. GAURI

This volume covers current chemical and immunological approaches to antiviral and anticancer chemotherapy. Several chapters delineate guidelines on the rational design of inhibitors of viral functions. Other chapters survey the present status of antiviral chemotherapy and discuss the modes of action that enable new strategies to evolve to yield more potent inhibitors. Chapters also discuss the resistance of herpes viruses to chemotherapy. SECTION HEADINGS: Biology of Viruses. Design of Inhibitors. HSV Mutation. Pharmacological and Toxicological Aspects. Vaccines and Interferon.

1981, 384 pp., $29.00 ISBN: 0-12-277720-4

ADVANCES IN PHARMACOLOGY AND CHEMOTHERAPY, Volume 18

EDITED BY SILVIO GARATTINI, ABRAHAM GOLDIN, FRANK HAWKING, AND IRWIN J. KOPIN

CONSULTING EDITOR: ROBERT J. SCHNITZER

FROM THE REVIEWS OF PREVIOUS VOLUMES:

"... will amply justify the time spent in its reading and should do much to dispel the belief that pharmacology is only concerned with the autonomic nervous system."
—B. A. Callingham in PHARMACEUTICAL JOURNAL

"The works ... represent an extensive compilation of recent data by outstanding researchers in this area. They are generally scientifically excellent, the bibliographies are good, and the individual reports are clear, concise, and extremely well illustrated."
—H. E. Kaufman in CHEMOTHERAPY

1981, 376 pp., $45.00 ISBN: 0-12-033918-2

Future volumes in ADVANCES IN PHARMACOLOGY AND CHEMOTHERAPY are now available on a Continuation Order basis. Your Continuation Order authorizes us to ship and bill each future volume in the series automatically, immediately upon publication. This order will remain in effect until cancelled. Specify the volume number or title with which your order is to begin.

Send payment with order and save postage and handling. Prices are in U.S. dollars and are subject to change without notice.

ACADEMIC PRESS, INC.
A Subsidiary of Harcourt Brace Jovanovich, Publishers
New York • London • Toronto • Sydney • San Francisco
111 FIFTH AVENUE, NEW YORK, N.Y. 10003

NUCLEOSIDES AND CANCER TREATMENT

Rational Approaches to Antimetabolite Selectivity and Modulation

EDITED BY M. H. N. TATTERSALL AND R. M. FOX

Proceedings of a Symposium held at the Ludwig Institute for Cancer Research (Sydney Branch) in October, 1980

1981, $37.50 ISBN: 0-12-683820-8

Mammalian cloned cell populations in culture have been of great value in many aspects of experimental cell biology.

Interest in creating colonies from individual mammalian cells, or clones, goes back to over 50 years ago. However, single cells that were isolated failed to grow because of the culture media and techniques then available. In 1935, Johannes K. Moen (J. Exp. Med., 61: 247, 1935) applied the bacteriological plating technique to individual mononuclear cells of the guinea pig. The first successful growth from a single isolated mammalian cell of a fixed tissue origin was achieved in 1948 by the tissue culture group working at the National Cancer Institute, K. K. Sanford, W. R. Earle, and G. D. Likely (J. Natl. Cancer Inst., 9: 229, 1948). Success was attributed to improvements in tissue culture media techniques and to the creation of a restricted environment in which the single cells could adjust to the culture medium and begin to divide. The original procedure maintained single cells in capillary tubes for the first few cell divisions, from which the colony migrated out into the flask to establish a clone culture. The method was altered a decade later (Exp. Cell Res., 23: 361, 1961) and subsequently simplified (See P. F. Kruse and M. K. Patterson (eds.), Tissue Culture Methods and Applications, p. 237. New York: Academic Press, Inc., 1978). The 1961 paper includes a history of cloning mammalian cells.

More recently, these techniques have been replaced by plating cell suspensions with aid of soft agar, plastic films, or nylon cloth (see Methods in Cell Biology. New York: Academic Press, Inc., 1979; e.g., Vol. 22, pp. 237 and 247). However, these represent colony isolates and not clones from rigidly established single cells.

Pictured are Drs. Katherine K. Sanford on the left, Wilton R. Earle (1902–1964), center, and Dr. Theodore T. Puck on the right. The figures on the left diagram the original procedure of Sanford et al., 1948. Single cells were picked from the floor of the flask by means of a micropipet. During cell isolation, the culture was gassed with 5% CO₂ in air to maintain the correct pH of the medium. A section of the capillary with the select cell was then cut and inserted into a flask. The figures on the right diagram the arrangement used to grow clones of HeLa cells (C) over a layer of ‘‘feeder’’ cells (F), immersed in liquid medium at Level E (from Puck and Marcus, 1955).

We are indebted to Drs. Sanford and Puck for the material and photographs.

M.B.S.