Human Prostate Androgen Receptor Quantitation: Effects of Temperature on Assay Parameters

Sydney A. Shain, Lester S. Gorelic, Robert W. Boesel, Howard M. Radwin, and Donald L. Lamm

Department of Cellular and Molecular Biology, Southwest Foundation for Research and Education [S. A. S., L. S. G., R. W. B.]; Division of Urology, Audie L. Murphy Memorial Veterans Hospital [S. A. S., D. L. L.]; and Department of Surgery, University of Texas Health Science Center [H. M. R., D. L. L.], San Antonio, Texas 78284

ABSTRACT

When cytoplasmic extracts of human prostatic tissues were split to permit quantitation of total androgen receptor (RCT) content by saturation analysis at 15° and 2°, we observed that 30% (10 of 32) of the specimens yielded statistically increased values for RCT following incubation at 15° as compared to 2°. Considering only those specimens (13 of 32) showing statistically differentiated RCT yield, 77% (10 of 13) yielded greater RCT content following incubation at 15°. The families of association constants (Kᵃ) obtained for RCT determinations at 2° and 15° were not statistically differentiated. The increased yield of RCT content determined at 15° was 95% (mean) and 20 to 350% (range). Nuclear androgen receptor content determined at 15° was greater for 25% (2 of 8) of the patient specimens when compared to split determinations performed at 2°. Incubation of nuclear extracts at 15° resulted in a significant 3-fold reduction in receptor Kᵃ for methyltrienolone (R1881). This did not appear to affect assay precision. These studies showed that incubation at 15° is preferable to incubation at 2° for quantitation of RCT and nuclear androgen receptor content by saturation analysis.

Single saturating dose determinations of RCT consistently yielded underestimates. The extent of underestimate was variable from specimen to specimen and was both ligand concentration and assay temperature dependent. Our data suggest that results of single saturating dose determinations of RCT require cautious interpretation.

INTRODUCTION

During the past 9 years, numerous investigators studying prostate physiology have determined prostatic androgen receptor content as one characteristic of physiological properties. Methods used for separation of receptor-bound ligand from nonreceptor-bound and solution-free ligand principally have included sucrose density gradient centrifugation (15, 19), agar:gel electrophoresis (12, 30, 31), polyacrylamide gel isoelectric focusing (2), solid-phase anti-5α-dihydrotestosterone antibodies (11), and DCC adsorption (8, 10, 22, 23, 27).

Separation procedures that did not involve DCC were princi-

PACIENT SPECIMENS. All tissues were obtained from consenting pa-

Received April 5, 1982; accepted July 20, 1982.

1 Supported in part by USPHS Grant CA-23668 and USPHS contract N01-CR-33379 from the National Cancer Institute, Department of Health and Human Services.

2 To whom requests for reprints should be addressed, at Southwest Foundation for Research and Education, West Loop 410 and Military Drive, San Antonio, Texas 78284.

3 Present address: Lockheed Missiles and Space Co., Inc., Sunnyvale, Calif. 94086.

4 The abbreviations used are: DCC, dextran-coated charcoal; R1881, methyltrienolone; TA, triamcinolone acetonide; PMSF, phenylmethylsulfonyl fluoride; DTI, dithiothreitol; TES buffer, 50 mM Tris:0.1 mM EDTA:380 mM sucrose, pH 7.4; DGCC, dextran-γ-globulin-coated charcoal; RC, available cytoplasmic androgen receptor; RCT, total cytoplasmic androgen receptor; SSD, single saturating dose.

4849

4082
Tissue Fractionation. All procedures were performed in a refrigerated room at 2–4°C. Frozen tissue was finely minced with a scalpel and homogenized with a Duali glass-glass homogenizer in 5 volumes of TES buffer. After removal of an aliquot (100 µl) for DNA determination, the homogenate was centrifuged 5 min at 2°C at 50,000 x g using a Sorvall SS-24 rotor. The resultant supernatant was brought to 20 mM sodium molybdate, 20 mM DTT, and 1 mM PMSF by addition of the appropriate volume of stock solutions of 1 M Na2MoO4 and 1 M DTT in TES buffer and 100 mM PMSF in isopropyl alcohol. Cytosol was prepared by centrifuging the resultant solution for 30 min at 2°C at 200,000 x g using a Beckman SW 50.1 rotor. Cytosol was treated with a DGCC pellet to remove endogenous unbound androgen (22), the DGCC-treated cytosol was brought to 1 µM TA, and TA containing cytosol was used for quantitation of androgen receptor content.

The crude nuclear pellet obtained by centrifugation at 50,000 x g was washed and then extracted 3 times with 10 mM Tris:1.5 mM EDTA:0.5 mM β-mercaptoethanol:600 mM KCl, pH 7.4, to provide a nuclear KCl extract as reported previously (22).

Androgen Receptor Quantitation. We quantitated RC and RCT content using our standard assay protocols (3, 22) with the following modifications. The assay mixture consisted of DGCC-treated cytosol (100 µl) containing TA (1 µM) and R1881 in a total volume of 220 µl TES buffer. For quantitation of RCT, the concentrations of ligand used were 2.5, 5.0, 10, 15, 20, 30, 40, 50, 80, and 100 nM R1881. Incubations for quantitation of RCT were 20 hr at 2°C or 15°C. RC was quantitated by incubation with R1881 for 2 hr at 2°C. The ligand concentrations used were 0.5, 1.0, 2.0, 5.0, and 10.0 nM. Comparative determinations of RCT during incubation at either 2°C or 15°C or determinations of RC were performed on the same day using different portions of the same cytosol preparation.

Nuclear androgen receptor content was quantitated as described previously by incubating nuclear KCl extracts (100 µl) with R1881 for 20 hr at either 2°C or 15°C. Assays were performed in a total volume of 220 µl containing 1.5 mM Tris:0.5 mM EDTA:0.5 mM β-mercaptoethanol:600 mM KCl, pH 7.4, using the following ligand concentrations: 0.5, 1.0, 2.0, 3.0, 5.0, and 10.0 nM. Comparative incubations at 2°C and 15°C were performed on the same day using different portions of the same nuclear KCl extract.

Nonspecific binding of radioligand was evaluated by parallel incubation in the presence of 1 µM radioinert R1881. All incubations were terminated by equilibration of assay tubes at 2°C and separation of bound and “free” R1881 by treatment with DGCC:ethanol, cytoplasmic assays, or DGCC, nuclear assays, as described previously (3, 22). Aliquots, 200 µl, of the resultant supernatants were generally counted to 2% precision, at the 95% confidence interval, in a Beckman 7500 scintillation spectrometer. After correction for nonspecific binding, data were displayed as Scatchard (20) and double reciprocal plots (22).

Other Methods. Protein was determined by the procedure of Lowry et al. (14) using bovine serum albumin as standard. Interference due to DTT in tissue extracts was eliminated with iodogen (Pierce Chemical Co., Rockford, Ill.) by using a minor modification of the procedure reported by McCland (16). Aliquots of iodogen dissolved in CHCl3 (0.3 ml; 2 mM) were dried in disposable culture tubes (10 x 75 mm) after which cytosol (50 µl) was added and incubated 30 min at room temperature prior to removal of an aliquot (5 µl) for protein determination. This procedure eliminated interference by solutions containing up to 30 mM DTT. Quantitation of DNA was performed as described previously (22), and salmon testis DNA was used as standard.

Statistical Analysis of Saturation Data. We exclusively used the double reciprocal plot format, where the independent variable ([R1881]–1 was the abscissa value and the dependent variable (fmol bound)–1 was the ordinate value, for statistical analysis of saturation data. The double reciprocal plot is the preferred representation because neither the ordinate value, bound/free, nor the abscissa value, bound, of the Scatchard representation is an independent variable which is a requirement for simple linear regression (18). Because replicate saturation analyses indicated that there was no definable relationship between the independent variable ([R1881]–1 and the variance of the dependent variable (fmol bound)–1, we used unweighted linear regression (18) to determine receptor site concentration and R1881 binding affinity. We estimated variance for the slope and intercept (18) and used these estimates to calculate 95% confidence limits.

To determine whether a regression defined a line that passed through the origin, we estimated the variance of the regression and used the single-tailed t test of significance (26). To determine the significance of differences for ordinate intercepts (site content), we estimated the variance of the individual regressions and used the combined variances to perform a 2-tailed t test of significance (18). Differences among group means were evaluated by one-way analysis of variance, and a posteriori contrasts were determined by the Student-Newman-Keuls procedure (17).

RESULTS

Effect of Incubation Temperature on Quantitation of Prostatic RCT Content: Cytoplasmic androgen receptor content of 32 different patient specimens is reported in Charts 1 and 2. RCT content determined at 2°C and 15°C was significantly different (p < 0.05) for 13 of the 32 specimens (Chart 1). RCT quantitated at 15°C and 2°C was statistically differentiated. Bars, 95% confidence interval for the mean. RC content determined by incubation at 2°C for 2 hr (E), RCT content determined by incubation for 20 hr at either 2°C (m) or 15°C (c), and total nuclear receptor content determined by incubation at 2°C or 15°C for 20 hr (a) are shown. Site content was derived by linear regression analysis of saturation data.
Human Prostate Androgen Receptors

Chart 2. Androgen receptor content of prostate specimens for which RCT quantitated at 15° and 2° was not statistically differentiated. Definitions and procedures of analysis were as described in the legend to Chart 1.

Content was greater at 15° for 10 (77%) of this group of 13 patient specimens. RCT content determined at 2° was greater (p < 0.05) than that determined at 15° for 3 (23%) of this group of 13 patient specimens. Notably, one of these latter patient specimens, Patient 30N, had essentially undetectable levels of cytoplasmic androgen receptors as determined during incubation for 2 hr at 2°, available sites, or during incubation for 20 hr at 15°, total sites (Chart 1). The mean percentage increase in RCT detected at 15° compared to 2° was 95%, and the range was 20 to 350% (Chart 1).

The data of Chart 2 show there was no statistically significant difference for RCT detected at 2° and 15° for 19 (59%) of the 32 patient specimens analyzed. Real differences, which were statistically rejected because of the quality of saturation data, may exist for 2 patient specimens, 92 and 71C. Results for Patient 48 (Chart 2) were similar to those for Patient 30N (Chart 1). There was a subgroup of patient specimens for which the upper limit of the 95% confidence interval could not be defined because the value of (fmol bound)^-1 was negative. This result was obtained for 6 of 33 and 2 of 33 patient specimens during incubation for 20 hr at 15° and 2°, respectively (Chart 2). Excluding the data for Patient 48, temperature-dependent increased RCT yields, which were not statistically differentiated, characterized the results for 9 patient specimens during incubation at 2°, whereas comparable results were obtained for 4 patient specimens during incubation at 15°.

The mean association constants for cytoplasmic receptor binding of R1881 during incubation for 2 hr at 2°, 20 hr at 2°, and 20 hr at 15°, respectively, were 11.0 × 10^8 (M)^-1, 5.74 × 10^8 (M)^-1, and 1.91 × 10^8 (M)^-1 (Chart 3). The data define families of association constants which are not statistically differentiated for incubations at either 2° or 15° for 20 hr. The family of association constants characteristic of human prostate cytosols incubated at 2° for 2 hr (quantitation of RC) was statistically different from that obtained during quantitation of RCT (Chart 3).

The value of RCT obtained during incubation at 2° was poorly correlated with that obtained during incubation at 15° (Chart 4). Analysis of variance revealed that the origin was not included among the population of values defining the regression equation. The data (Chart 4) imply a tendency to underestimate RCT during incubation at 2°.

Chart 3. Association constants for human prostate cytoplasmic androgen receptors quantitated as RC sites, 2°, 2-hr incubation and as RCT sites, 2° or 15°, 20-hr incubation. Values were determined from regressed saturation data. *, statistically different, p < 0.05.
S. A. Shain et al.

RCT concentration determined at a SSD was highly correlated with RCT concentration determined by full saturation analysis (Chart 5). Analysis of variance revealed that the origin was not included among the population of values defining the regression equation for determinations of RCT performed at either 2° or 15°. This result implies that SSD analyses underestimate RCT. The mean underestimate of RCT by SSD at 10 nm R1881 was 30%, 2° incubation, and 45%, 15° incubation, whereas the mean underestimates at 20 nm R1881 were 15%, 2° incubation and 25%, 15° incubation.

Effect of Incubation Temperature on Quantitation of Prostatic Nuclear Androgen Receptor Content. Nuclear androgen receptor content was significantly greater for incubation at 15° for 2 of 8 patient specimens examined (Chart 6). The increased receptor yield for both specimens was 40%. The results for the other 6 patient specimens showed that receptor contents determined at 2° and 15° were not statistically differentiated. Increasing incubation temperature to 15° significantly decreased (p < 0.05) the association constant of R1881 for the nuclear receptor (Chart 7). The mean values for the 8 paired (A1 through A8) patient specimens were $7.79 \times 10^8 \text{ (M)}^{-1}$, 2°, and $3.61 \times 10^8 \text{ (M)}^{-1}$, 15°, whereas the mean values for all determinations were $9.90 \times 10^8 \text{ (M)}^{-1}$, 2°, and $3.37 \times 10^8 \text{ (M)}^{-1}$, 15°. These results show that the limited data for the paired analyses are representative of those for the larger population of unpaired analyses.

There was no apparent relationship between nuclear androgen receptor content and cytoplasmic androgen receptor content or occupancy (Charts 1 and 2). Cytoplasmic receptor content was greater than or equal to nuclear receptor content in 85 to 90% of the patient specimens (Chart 7). The value of the ratio RCT:total nuclear androgen receptor for these patient specimens when RCT was quantitated at 2° was 2.33 ± 1.32 (S.D.), whereas when RCT was quantitated at 15° it was 2.65 ± 2.1 (Charts).

DISCUSSION

In this study, we show that 30% (10 of 32) of human prostate specimens yield statistically greater RCT content for incubation
at 15° compared to that for incubation at 2°. By contrast, only 10% (3 of 32) of the specimens yielded statistically greater RCT following incubation at 2°. Considering only those specimens which showed statistically differentiated RCT yield, 77% (10 of 13) yielded greater RCT content during incubation at 15°. The increased yield of RCT at 15° cannot be attributed to measurement of an R1881-binding component other than the prostatic androgen receptor because of the following considerations. Scatchard plots of the data obtained for paired analyses of RCT performed at 15° and 2° were linear and thus did not provide evidence for measurement of multiple classes of binding sites. Steroid specificity of R1881 binding to human prostate androgen receptors during incubation at 15° (20 hr) in the absence of TA (8, 21) is comparable to that during incubation at 2° (20 hr) in the presence of TA (10). The families of association constants (K_a) obtained for split cytoplasmic preparations incubated for 20 hr at 2° and 15° are not statistically differentiated (Chart 3). Finally, both receptor site content and the family of association constants for R1881 obtained in the current study are comparable to those reported previously by us (21, 23) and others (8, 28, 29). This suggests that the minor assay modifications introduced in the current studies have not significantly altered assay parameters.

An enhanced yield of nuclear androgen receptors during incubation at 15°, as compared to 2°, was characteristic of 25% (A2 and A5, 2 of 8) of patient specimens examined (Chart 6). Although incubation at 15° significantly reduced K_a of the nuclear receptor for R1881 (Chart 7), this change did not appear to significantly affect assay precision (Chart 6). Hicks and Walsh (10) have reported identical recovery of nuclear androgen receptor when human prostate KCl fractions are incubated at either 2° or 15° with 10 nM R1881. We have previously shown increased yield of nuclear androgen receptors during incubation at 15° (24). The reason nuclear androgen receptor yield at 15° is not consistently increased relative to yield at 2° (Chart 6) is not apparent.

The use of a SSD of ligand for analysis of RCT has been considered an attractive alternative when small samples must be analyzed (10) and is a common feature of some assay protocols (2, 11, 12, 30, 31). We now report that although RCT content determined by the SSD procedure is highly correlated with RCT content determined by full saturation analysis (Chart 5), the SSD procedure underestimates RCT content in most specimens. The extent of underestimate of RCT is ligand-concentration dependent and highly variable. In our experience, SSD underestimates of RCT at 2° were 30% (mean; range, 0 to 60%) for 10 nM R1881 and 15% (mean; range, 0 to 55%) for 20 nM R1881, whereas underestimates of RCT at 15° were 45% (mean; range, 0 to 98%) for 10 nM R1881 and 25% (mean; range, 0 to 80%) for 20 nM R1881. This variability is not unexpected when the families of R1881 association constants that characterized these cytoplasmic preparations (Chart 3) are considered. If single concentration determinations of cytoplasmic receptor content are necessitated by limited availability of tissue, our data (see above and Chart 5) suggest that underestimates would be minimized by performing the exchange incubation at 2°. Our data indicate that SSD determinations of human prostate RCT content require cautious interpretation. It is perhaps notable that each complete saturation analysis for RCT described in this report required the equivalent of 200 mg of tissue.

Our current studies (Chart 8) confirm a previous report (23) that the majority of prostatic androgen receptors are not located in the nuclear compartment. Our studies do not confirm the frequent assumption that most prostatic androgen receptors are localized in the nucleus due to occupancy by endogenous androgen (13, 17). In fact, the current studies fail to establish a relationship between cytoplasmic receptor content and/or occupancy and nuclear receptor content (Charts 1 and 2). Furthermore, we have shown that androgen-stimulated accumulation of rat prostate nuclear androgen receptor is not associated with depletion of cytoplasmic receptor (3). These considerations suggest that prostatic cytoplasmic and nuclear androgen receptors may have independent functions and that both should be quantitated when examining the relationship between prostate physiology and androgen receptor content.

ACKNOWLEDGMENTS

We are deeply indebted to the staffs of the Urology Services of The University of Texas Health Science Center at San Antonio, the Audie L. Murphy Memorial Veterans Administration Hospital, and the Wilford Hall USAF Medical Center, without whose participation this study would not have been performed. We thank Robert W. Klipper for expert technical assistance. We are particularly grateful to Paulette Dorr, R.N., who coordinated clinical collection of specimens and their processing.

REFERENCES

Human Prostate Androgen Receptor Quantitation: Effects of Temperature on Assay Parameters

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/42/11/4849

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.