Evidence for Single-Cell Origin of 3-Methylcholanthrene-induced Fibrosarcomas in Mice with Cellular Mosaicism

Hiroshi Tanooka and Kazuhiko Tanaka

ABSTRACT

Fibrosarcomas produced by s.c. injection of 5 µg of 3-methylcholanthrene in Pgk-1"/Pgk-1" mice carrying X-chromosome inactivation mosaicism for the phosphoglycerate kinase (PGK-1) gene contained only one type of phosphoglycerate kinase in seven of eight cases (88%), as judged from its electrophoretic mobility, indicating the single-cell origin of the tumor.

INTRODUCTION

Fialkow (2) has presented evidence for the monoclonal origin of various human tumors in females heterozygous for the X-chromosome-linked gene for glucose-6-phosphate dehydrogenase and hence consisting of 2 types of enzymatically different somatic cells due to inactivation of one of a pair of X-chromosomes (4). On the contrary, in mice heterozygous for the X-chromosome-linked gene of the enzyme PGK2 (5), Reddy and Fialkow (6) reported that fibrosarcomas induced with MC and solved the technical difficulty of contamination by host, the transplanted tumors were excised for assay of PGK.

Electrophoresis of PGK. The excised pieces of tumor were washed with distilled water and homogenized with a mechanical homogenizer (type PT 10/35 Polytorn; Kinematica GmbH) in PGK buffer (3). The supernatant of this homogenate was used for PGK assay. Electrophoresis was carried out on a gel plate (15 x 14 cm) of 12% starch (Connaught Laboratories) for 17 hr at 5 V/cm and 4°C. The gel plate was then cut into 2 slices, and PGK was detected as nonfluorescent spots due to conversion of NADH to NAD in the PGK assay system (3). The spot of A-type PGK was usually 5 cm from the origin, and that of B-type PGK was 3 cm from the origin. A detectable spot of PGK was obtained with 2 x 10^6 tumor cells (2% of the cells usually applied).

RESULTS

Tumors developed in 8 of 16 mice (50%) 200 days after MC injection, and they were identified histologically as fibrosarcomas. Fig. 1 shows the electrophoretic patterns of PGK of one of the tumors assayed under various conditions. The blood of this Pgk-1"/Pgk-1" mouse contained 2 types of PGK, as did homogenates of its kidney, liver, and lung (data not shown). The original tumor appeared to contain 2 types of PGK. However, extensive washing of the original tumor with distilled water to remove RBC or further treatment with trypsin and collagenase decreased the intensity of the spot of B-type PGK appreciably, although not completely (Fig. 1). After transplantation into an A host, the tumor tissue gave only the spot corresponding to A-type PGK, with none corresponding to B-type PGK. After transplantation into a B host, the tumor tissue gave both spots (Fig. 1). Moreover, tumor transplanted into an A host after passage through a B host contained A-type PGK only (data not shown).

Thus, the B-type PGK in this tumor is thought to be due to contamination of blood and supporting connective tissue of the host, and the tumor shown in Fig. 1 was concluded to contain type A PGK only. Comparable results were obtained with tumors containing B-type PGK. The tumor showed only the B-type pattern after passage through a B host and both types after passage through an A host. A tumor with both PGK types exhibited both PGK patterns after passage through either an A host.
or a B host (data not shown). Although the PGK type could be determined with the original tumor tissue, we used the transplantation method in this study, since it gave clearer results.

Results on the PGK types of tumors induced with 5 µg MC are summarized in Table 1. PGK types were judged from 4 pairs of PGK patterns. Of 8 tumors examined, 5 exhibited A-type, 2 showed B-type, and 1 exhibited both types. Accordingly, the frequency of single-phenotype tumors was 88%.

Since A-type tumors were more frequent than B-type tumors, the possibility of their selection during tumor growth was examined. This possibility also applied to PGK type of tumors transplanted into A- and B-hosts. A suspension of a 1:1 mixture of the 2 types of tumor cells (1.5 x 10³ cells each) in 0.1 ml was injected s.c. into A- and B-hosts, respectively. After regrowth, the tumors were assayed for PGK. Both types of PGK were found in tumors grown in either host, indicating the absence of selection (data not shown).

DISCUSSION

Before drawing any conclusions from the present results, several problems should be considered. (a) The area of mouse skin treated with a carcinogen should cover a large number of patches of A- and B-type cells. The cellular mosaicism produced by X-chromosome inactivation provides a fine intermixture of 2 types of cells in mice. With heterozygous mice carrying X-chromosome-linked normal pigment and albino alleles, Deol and Whitten (1) showed that the patch size is less than 90 µm in sections of the retina and less than 0.02 sq mm in diameter in sections of the inner ear. In the skin, this patch size is considered to be much smaller. In our experiments, the carcinogen-treated area was 5 mm in diameter (20 sq mm), as measured from the size of the swollen skin after injection of carcinogen solution. Consequently, the treated area should be large enough to cover a large number of A- and B-type cell patches. (b) It should be assumed that X-chromosome inactivation is not disturbed during cellular tumorigenesis. (c) No selection of one type of cells should occur during tumor growth. This selection seems unlikely from results on transplantation of a mixture of 2 types of cells, which resulted in equal growth of both types of cells, although initial number of cells at transplantation was large (3 x 10³ cells).

On the basis of the above considerations, our finding that most tumors produced in mosaic mice had a single PGK phenotype provides evidence for the single-cell origin of tumors.

It is unlikely that a single PGK phenotype was produced by multiple cellular events, since the probability that, in a population of cells consisting of equal numbers of A- and B-type cells, n independent cellular events occur in A-type cells only or in B-type cells only is (½ⁿ) x 2, i.e., ½ⁿ - 1; consequently, 88% incidence of single-phenotype tumors cannot be explained in the case of n ≥ 2. In this work, A-type tumors were produced at higher frequency than were B-type tumors, but this imbalance needs confirmation.

The C3H/He mice used in the present work are more sensitive to MC than were ICR/JCL (7) mice. The dose of MC used in the present work, 5 µg/mouse, is in the middle of the linear dose response range for tumor induction. The sensitivity to MC of the F₁ hybrid of feral and BALB/c mice used by Reddy and Fialkow (5) is unknown. However, the doses of MC that they used, 0.2 and 2 mg/mouse, seem very high, and the chance for multiple cellular events would probably have been higher in their work. This difference in the dose of carcinogen applied may explain the apparent discrepancy between their results.

### Table 1

<table>
<thead>
<tr>
<th>Tumor no.</th>
<th>Transplanted into A host</th>
<th>Transplanted into B host</th>
<th>Deduced PGK type of original tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

* Transplantation failed.
and ours, because the ratio of the frequency of induction of a single PGK phenotype to that of multiple PGK phenotypes should vary depending on the dose of MC.

The above considerations also explain the predominance of monoclonal type tumors in the human population (2), since most human tumors are thought to be produced by exposure to a relatively low dose of environmental carcinogens. Detailed studies are required on the dose dependence of formation of the single PGK phenotype tumors.

ACKNOWLEDGMENTS

We thank Dr. Verne M. Chapman for supplying the mouse strain; Dr. Nobuo Munakata, Dr. Yukihiko Kitamura, and Dr. Toyozo Sekiguchi for valuable suggestions; Dr. Kanji Ishizaki for technical advice on enzyme assay; Dr. Hiroshi Hoshino for help in histological examinations; Mizue Nagase for technical assistance; and Tomi Kawasaki and Mon Ebinuma for animal care.

REFERENCES

Evidence for Single-Cell Origin of 3-Methylcholanthrene-induced Fibrosarcomas in Mice with Cellular Mosaicism

Hiroshi Tanooka and Kazuhiko Tanaka


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/42/5/1856

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.