Identification of a Fish Protein Associated with a Kinase Activity and Related to the Rous Sarcoma Virus Transforming Protein

Angelika Barnekow, Manfred Schartl, Fritz Anders, and Heinz Bauer

ABSTRACT

Cells of all vertebrates thus far investigated contain a cellular src gene, which appears to be a highly conserved homolog of the Rous sarcoma virus oncogene src. Similar to the Rous sarcoma virus oncogene src, this endogenous cellular src gene codes for a Mr 60,000 phosphoprotein (pp60^{c-src}) which is associated with a kinase activity. This kinase specifically phosphorylates tyrosine residues of proteins. We have systematically looked for pp60^{c-src} in specific strains of certain teleostean fish, including the genera Xiphophorus and Girardinus. These strains are known to contain chromosomal oncogenes causing neoplastic transformation in certain mutants and hybrids.

Since the pp60^{c-src} found in other species has been shown to be antigenically related to the viral src gene product, a phosphoprotein with a molecular weight of 60,000 (pp60^{v-src}), we have used tumor-bearing rabbit serum which recognizes Rous sarcoma virus pp60^{v-src} to detect such a related protein in fish. Tumor-bearing rabbit serum precipitated two proteins with molecular weights of 60,000 and 52,000. The Mr 60,000 phosphoprotein was associated with a protein kinase activity that phosphorylates tyrosine residues of the immunoprecipitating immunoglobulin G heavy chain (M_r 53,000). The antigenic relationship of this fish protein to viral pp60^{v-src} was further documented by an immune competition assay. We conclude, therefore, that the fish Mr 60,000 phosphoprotein is a phosphoprotein encoded by a fish cellular src gene that corresponds to the viral src oncogene. The Mr 52,000 phosphoprotein is probably a proteolytic degradation product of pp60^{c-src}.

All animals of the various strains of the fish investigated in this study showed kinase activity that was reactive upon immunoprecipitation with tumor-bearing rabbit serum, indicating that the pp60^{c-src} protein is a normal constituent of the fish. Measurable quantitative differences were revealed between the various strains as well as in different tissues. Whereas brain and melanoma tissue showed a high kinase activity when compared to skin, liver, spleen, and testes, muscle tissue displayed no significant activity.

INTRODUCTION

In recent molecular biological studies on the origin and maintenance of the neoplastic state in vertebrates, emphasis is being placed on the identification of certain cellular genes of unknown function that correspond to the biochemically well-characterized oncogenes of RNA tumor viruses, such as src of the RSV. All vertebrates thus far examined, including salmon, chicken, mouse, calf, and human, display nucleotide sequences in their genome, which are closely related to the sequences of the viral src oncogene and which are called c-src (23-26).

The viral pp60^{v-src} is intimately associated with a protein kinase activity which phosphorylates tyrosine residues of the heavy chain of IgG in immunoprecipitates (4, 6-9, 11).

A variety of cells from frogs, birds, and mammals have been shown to contain a protein, probably the gene product of c-src, pp60^{c-src}, that is closely related in structure and biochemical properties to pp60^{v-src} (3, 5, 16, 17, 22).

Although the homologies between the cellular and the viral oncogenes and gene products, respectively, suggest very similar biological functions, there is, to our knowledge, no convincing evidence to relate the c-src and its protein product to neoplasia induced by agents other than viruses. In order to demonstrate the possible involvement of the c-src or pp60^{c-src} in the nonviral induction of neoplasia, we have undertaken a new approach which is based on genetic and cytogenetic studies on the origin of neoplasia in certain teleostean fish. In Xiphophorus, a viviparous genus from Central America, and Girardinus, which is the corresponding genus from Cuba, we found that all individuals tested contain chromosomal genes that are essential for tumor formation (1, 21). Tumors occur spontaneously or following treatment with mutagens and/or tumor promoters in certain mutants and in interpopulational, interracial, and interspecific hybrids (2). It appeared worthwhile to investigate whether the expression of fish pp60^{c-src} is correlated to the expression of these fish oncogenes.

The present paper deals with the first part of our attempt to identify c-src genes in Xiphophorus, Girardinus, and some taxonomically related fish by means of quantitative studies on the protein kinase activity of pp60^{c-src}. In the second part, we will describe investigations correlating the activity of pp60^{c-src} with the phenotypic expression of the chromosomal oncogenes of the fish.

MATERIALS AND METHODS

Experimental Animals

All fish used in the present study were bred in our laboratories under standard conditions (12). They were derived from geographically iso-

1 This work was supported by the Sonderforschungsbereich 47 and 103 of the Deutsche Forschungsgemeinschaft.
2 To whom requests for reprints should be addressed.
Received October 28, 1981; accepted February 19, 1982.
lated wild populations and were bred in closed stocks or inbred, respectively, for many generations. Neoplasia-developing hybrids were obtained by crossing procedures described earlier (1).

Inbred Fish

For denomination of taxa, see Refs. 18 and 19.

Poeciliidae. Xiphophorus helleri. Heckel 1848. Two populations were used: (a) Belize River (British Honduras), inbred since 1949, i.e., 80 generations; and (b) Rio Lancetilla (Mexico), inbred since 1951, i.e., 80 generations.

Xiphophorus maculatus. Günther 1866. Three populations were used: (a) Belize River (British Honduras), inbred since 1949, i.e., 80 generations; (b) Rio Lancetilla (Mexico), inbred since 1939, i.e., 120 generations; and (c) Rio Usamacinta (Mexico), inbred since 1949, i.e., 80 generations.

Xiphophorus cortezi. Rosen 1960. Rio Axtla-Rio Panuco system (Mexico), probably inbred since 1939, i.e., 100 generations.

Xiphophorus variatus. (Meek) 1904. Two populations were used: (a) Rio Coy (Mexico), inbred since 1978, i.e., 10 generations; and (b) Rio Panuco (Mexico), no precise information about the year of capture available, inbred for more than 70 generations.

Girardinus falcatus. (Eigenmann) 1903. Central Cuba (particular locality of collection unknown). Loosely inbred for about 20 generations, subsequently highly inbred for 9 generations.

Girardinus metallicus. Poey 1854. Central Cuba (particular locality of capture unknown). Loosely inbred for about 20 generations, subsequently highly inbred for 11 generations.

Poecilia sphenops. Valenciennes 1846. Puerto Barrios (Guatemala), inbred for 15 generations.

Belonesox belizanus. Kner 1860. Chetumal, Yucatan Peninsula (Mexico) highly inbred for 8 generations.

Heterandria bifasciata. (Heckel) 1848. Ciudad Aleman (Mexico), inbred since 1978, i.e., 6 generations.

Goodenidae. Xenotoca eiseni. Mexican Highlands (particular locality of capture unknown). Loosely inbred for about 25 generations.

Hybrids

BC hybrids of **X. maculatus × X. helleri** using **X. helleri** as the recurrent parent: (a) malignant melanoma-bearing BC hybrids and (b) benign melanoma-bearing BC hybrids.

Wherever the species is not taxonomically specified in the text, **X. helleri** was used.

Cells and Viruses

Chicken embryo cells were prepared from 9-day-old embryos (Lohmann, Cuxhaven, Federal Republic of Germany) and grown in Dulbecco's modified Eagle's medium (Flow Laboratories, Bonn, Federal Republic of Germany) supplemented with 5% calf serum. The cells were infected with SR-A of RSV. The virus-infected cells were maintained in the same medium supplemented with 1% dimethyl sulfoxide.

Antisera

Antisera from RSV tumor-bearing rabbits were prepared by simultaneous injection of SR-D RSV and Prague C strain RSV into newborn rabbits in a modification (27) of the procedure described by Brugge and Erikson (4).

Radioactive Labeling of Brain Cells

Brains of fish were chopped into small pieces (diameter, less than 0.5 mm), immediately washed once with prewarmed phosphate-buffered saline (0.17 M NaCl:3.3 M KCl:10 mM NaHPO4:1.8 mM KH2PO4, pH 7.2), and incubated at 28°C for 3 hr with phosphate-free Dulbecco's modified Eagle's medium containing 1 mCi of 32P per ml of medium.

Preparation of Cell Extracts and Immunoprecipitation

SR-A-transformed chick embryo cells (107) were scraped off the plates with a rubber policeman in 1 ml phosphate buffer containing 10 mM sodium phosphate, 40 mM NaF, 10 mM EDTA, 1% Triton X-100, and 5% Trasylol (Bayer, Leverkusen, Federal Republic of Germany) as protease inhibitor. Fish samples were homogenized in the same buffer using a tightly fitting Dounce homogenizer (10 strokes at 4°C).

The disrupted chicken and fish cells were centrifuged for 30 min at 6000 × g and then used immediately for immunoprecipitation. The clarified supernatants (1 ml) were incubated each with 5 to 10 μl of TBR serum for 60 min at 4°C. A 10% suspension (30 to 50 μl) of formaline-fixed Staphylococcus aureus prewashed 3 times was added to absorb the immunocomplexes. After 30 min, the immunocomplexes were centrifuged for 2 min in an Eppendorf centrifuge, washed twice with 1 ml kinase washing buffer (10 mM sodium phosphate:40 mM NaF:10 mM EDTA:0.2% Triton X-100:1 mM NaCl), and washed once with 1 ml H2O. Unlabeled immunocomplexes were subjected to the kinase assay. Labeled samples were washed 4 times with kinase washing buffer and once with H2O, and the pellet was then resuspended in 30 μl of sample buffer [2% sodium dodecyl sulfate:10% glycerol:70% H2O:8% 1 M Tris (pH 6.8): 2% mercaptoethanol:0.02% 3',3'',5',5''-tetramobromophenol sulphonaphthalein]. This mixture was boiled for 2 min and centrifuged for 2 min at 10,000 × g, and the supernatant was loaded onto a 11% acrylamide slab gel with a 2.5% acrylamide stacking gel. The labeled proteins were detected by autoradiography after staining, destaining, and drying of the gels. The molecular weight of the proteins on the gels was calibrated using 14C-labeled protein markers (Amersham Ltd., Amersham, United Kingdom) and 32P-labeled heavy chain of IgG. For quantitation, the radioactive gel bands were cut out and solubilized, and their radioactivity was determined by liquid scintillation counting.

Protein Kinase Assay

The protein kinase assay was performed according to the method of Collett and Erikson (6), except that the incubation was at 4° for 5 min. Protein A-bound immunoprecipitates from unlabeled cell extracts were prepared as described above and suspended in 10 μl of kinase buffer (20 mM 1,3-bis[(tris(hydroxymethyl)methy]aminom)propane:50 mM MgCl2, pH 6.8) and 10 μl of approximately 0.1 μm [γ-32P]ATP (>2000 Ci/mmol; Amersham Ltd.) in 50 μl of kinase buffer were added to each sample. The reaction was stopped by adding 1 ml quench buffer (100 mM sodium phosphate:10 mM EDTA:40 mM NaF:1 μM ATP (pH 7.0)) to the samples, and the labeled immunocomplexes were processed for gel electrophoresis as described above. Autoradiograms show equal amounts of protein for each sample. In a parallel experiment, the whole sample was loaded onto a gel, and the radioactivity in the heavy chain of IgG was determined as described above. Aliquots of the unlabeled samples were processed for protein determination.

Protein Determination

Determination of protein concentration in a supernatant of the centrifuged cell lysates was carried out on trichloroacetic acid-precipitated aliquots according to the method of Lowry et al. (14).

Phosphoamino Acid Analysis

32P-labeled IgG of TBR serum-precipitated immunocomplex of fish brain extracts was cut out of the gel, eluted from the gel sample, and processed for phosphoamino acid analysis according to the method described by Hunter and Setton (11) as modified by Ziemiecki et al.5
Absorption Inhibition Assay

Heat-inactivated (30 min, 52°C), SR-A-transformed chick embryo cell lysates were incubated with 2 μl TBR serum diluted 1:160 for 12 hr on ice. Fish brain extracts were then added to the incubation mixture for 180 min. Subsequently, prewashed S. aureus was added, and the sample was processed for the protein kinase assay as described earlier. In a control experiment, the same amount of fish brain extract was directly incubated with the same amount of pp60src antibodies for 180 min, and after addition of Staphylococcus, the kinase assay was performed.

RESULTS

Evidence of a TBR Serum-reactive M, 60,000 Phosphoprotein in Fish. Fish brain tissue was radiolabeled with [32P]Pi, in vitro and then extracted for immunoprecipitation with TBR serum. The precipitated proteins were analyzed by polyacrylamide gel electrophoresis. Two phosphoproteins, an M, 60,000, and an M, 52,000 protein were detected (Fig. 1). Immunoprecipitation with normal rabbit serum did not show these proteins. Therefore, it is assumed that the precipitated M, 60,000 phosphoprotein is the pp60src correlate to the avian pp60src. As the protease activity in brain is extremely high, the M, 52,000 protein may be a degradation product of the M, 60,000 protein. In the chick fibroblast RSV system, it has been shown that pp60src is degraded into pp52 (10).

pp60src-associated Kinase Activity in Brain Tissue. In a parallel experiment, the fish brain extracts were tested for a c-src kinase activity similar to the avian pp60src-associated kinase. The strategy of these experiments was to measure phosphorylation of IgG in the TBR serum upon reaction with pp60src-containing fish cell extracts. It was shown that IgG in this reaction was phosphorylated (Fig. 2), while immunoprecipitation with normal rabbit serum did not show phosphorylation of IgG. The phosphorylation occurred in tyrosine (data not shown), which is the specific amino acid residue phosphorylated by the RSV pp60src-associated kinase (7, 11).

Comparison of pp60src Kinase Activity in Different Tissues. Considerable differences in kinase activity were detected in the different tissues (Fig. 2). No significant activity was found in muscle. Skin, liver, and testes showed low activity as compared to that of spleen and benign melanoma, while in brain the kinase activity was always high. The highest kinase activity was found in extracts of malignant melanoma and of the brain of one and the same fish, whereas in fish with benign melanoma the melanoma and brain extracts both showed less kinase activity.

Absorption Inhibition Assay for pp60src and pp60src. To further confirm the antigenic relationship between the fish cell pp60src protein and the pp60src an absorption inhibition assay was performed (Fig. 3). TBR serum was first reacted with heat-inactivated SR-A-transformed chicken cell extracts. These extracts did not show any kinase activity, but the antigenic sites remained intact as shown by Rübsamen et al. (20).

Subsequently, the pp60src-specific serum was reacted with fish brain extracts. As shown in Fig. 3, the SR-A extracts were able to block TBR antibodies and to reduce the binding of the pp60src antibodies to fish pp60 src by as much as 40%, indicating structural similarities between the fish pp60src and the pp60src.

Kinase Activity throughout the Lifetime of Fish. In order to test whether the kinase activity changes during the lifetime of the fish, we determined the specific activity using the protein kinase assay in brain extracts and as a negative control in muscle extracts of X. helleri (Rio Lancetilla) of different ages. The kinase activity measured in neonates (n = 30) and 6-week-old (n = 9), 12-week-old (n = 9), 1-year-old (n = 15), and 2-year-old (n = 5) fish showed no significant differences.

Kinase Activity in Fish of Different Taxonomic Groups. No variation in the kinase activity between individuals of the same population was detected. In contrast, differences between individuals of the 2 fish families tested and between different genera (e.g., Heterandria and Girardinus), different species (e.g., G. falcatus and G. metallicus), and even different populations of the same species (X. maculatus from Belize River and from Rio Jamapa) could be demonstrated (Table 1). This variation is not correlated to the phylogenetic relationship or to the taxonomic differences of the fish tested in this study. The lowest amount of kinase activity was found in P. sphenops (80 cpm/mg protein) and the highest amount, in X. helleri from Rio Lancetilla (400 cpm/mg protein).

DISCUSSION

All vertebrates tested thus far contain endogenous genes related to viral genes which are responsible for the viral oncogenic capacity (13, 16, 17, 23). These cellular genes may therefore be called cellular oncogenes. Such an oncogene is the endogenous c-src which is a highly conserved homolog of src, the RSV-transforming gene.

In lower vertebrates, c-src was demonstrated so far only in salmon (25) and Xenopus (17), which have rather large genomes. It therefore appeared worthwhile to determine whether fish, such as Xiphophorus and related genera which have the basic genome of vertebrates (15), contain oncogenes such as c-src. Furthermore, Xiphophorus was especially attractive in a search for c-src as well as any other type of oncogene, because it is known from formal genetic studies that all individuals of all species and all populations of this genus contain a chromosomal oncogene that mediates neoplasia if it becomes derepressed (1, 2).

In all fish tested in this study, we identified a phosphoprotein that, as shown by its antigenic, biophysical, and enzymatic
properties, is related to the pp60src of RSV. This fish phospho-
protein was detected by antiseraum against pp60src; it has an
estimated molecular weight of 60,000 and is associated with
a kinase activity which phosphorylates the tyrosine residue in the
heavy chain of anti-pp60src IgG. It is therefore assumed to be
the product of a fish c-src gene. The M, 52,000 phosphoprotein
that has been detected together with the M, 60,000 phospho-
protein after immunoprecipitation of 32P-labeled fish brain ex-
tracts is assumed to be a proteolytic degradation product of
pp60src similar to that shown in the chicken system (10).

A certain level of kinase activity has been detected in skin,
nerve, liver, spleen, and testes but not in muscle tissue. The highest
level, however, has been found in melanoma and brain tissue.
Since pigment cells, like brain cells, originate from the neu-
roectoderm, one can assume that the increased kinase activity,
a common feature of both cell types, may be due to their
ontogenetic relationship. On the other hand, the fact that brain
cells do not proliferate, whereas melanoma cells show high
rates of proliferation, indicates that elevated pp60src kinase activity is not necessarily correlated with cell division. One
possible explanation for the failure to detect significant
amounts of pp60src in muscle tissue is the inability to detect
very low amounts of pp60src. Another possibility could be that
there is no expression of the c-src gene in fish muscle cells. It
is worth mentioning in this context that the highest kinase
activity found in fish is comparable to the activity found in
normal chicken cells which, in turn, is about 30 to 50 times
lower than in RSV-transformed cells (5). Furthermore, the
proteins coded for by the various viral and cellular src gene
homologs are not antigenically totally identical, so that a given
antiseraum must not detect all kinds of pp60src or pp60src,
respectively.

The differences in kinase activity found in various organs of
the fish, populations, species, genera, and families may be due to
increased enzyme activity or increased gene expression.
Thus far, no data allow us to differentiate between these 2
possibilities. Whether the elevated level of kinase activity in
brain cells as compared to other nonneoplastic tissues points
to a possible function of pp60src in normal avian and
mammalian cells. Thus, the data obtained indicate that a given
antiseraum must not detect all kinds of pp60src or pp60src,
respectively.

ACKNOWLEDGMENTS

We thank Dr. C. B. Boscek for critical reading of the manuscript.
The excellent technical assistance of E. Ossendorf, U. Wend, and C. Reitz is
gratefully acknowledged.

REFERENCES

1. Anders, A., and Anders, F. Etiology of cancer as studied in the platyfish-
2. Anders, F., Schartl, M., and Scholl, E. Evaluation of environmental and
hereditary factors in carcinogenesis, based on studies in Xiphophorus. In:
C. J. Dawe, J. C. Harshburger, S. Kondo, T. Sugimura, and S. Takayama
(eds.), Phytochemical Approaches to Cancer, pp. 289-309. Tokyo: Japan
Rous sarcoma virus transformation: action of the src gene product. In: H. G.
lin: Springer-Verlag, 1981.
antigen induced by avian sarcoma virus. Nature (Lond.), 269: 346-348,
1977.
avian cell protein related to the avian sarcoma virus transforming gene
6. Collett, M. S., and Erikson, R. L. Protein kinase activity associated with
7. Collett, M. S., Purcho, A. F., and Erikson, R. L. Avian sarcoma virus
transforming protein, pp60src, shows protein kinase activity specific for
phosphorylated by the avian sarcoma virus-transforming gene product. Cell, 21:
829-836, 1980.
the avian sarcoma virus transforming product is a cAMP-independent pro-
10. Erikson, E., Collett, M. S., Erikson, E., Purcho, A. F., and Brugge, J. S.
Protein phosphorylation mediated by partially purified avian sarcoma virus
907-917, 1980.
11. Hunter, T., and Sefton, B. M. Transforming gene product of Rous sarcoma
1315, 1980.
Corporation, 1975.
13. Karess, R. E., Hayward, W. S., and Hanafuse, H. Cellular information in the
gene of recovered avian sarcoma virus directs the synthesis of transform-
measurement with the Folin phenol reagent. J. Biol. Chem., 193:
265-275, 1951.
15. Ohno, S. Sex Chromosomes and Sex-linked Genes. p. 43. Berlin: Spring-
er Verlag, 1967.
16. Oppermann, H., Levinson, A. D., Varmus, H. E., Levinlow, L., and Bishop, J.
M. Uninfected vertebrate cells contain a protein that is closely related to
17. Rohrschneider, L. R., Eisenmann, R. N., and Leitch, C. R. Identification of a
Rous sarcoma virus transformation-related protein in normal avian and
18. Rosen, D. E. Fishes from the uplands and intermountain basins of Guatemala:
strains of avian sarcoma virus: kinetics and possible mechanism of heat
inactivation of protein kinase activity from cells infected by transformation-
defective, temperature-sensitive mutant and wild-type virus. Proc. Natl.
20. Schartl, A., Schartl, M., and Anders, F. Promotion and regression of neopla-
sis by testosterone-promoted cell differentiation in Xiphophorus and Girar-
Raven Press, 1982.
21. Sefton, B. M., Hunter, T., and Beem, K. Relationship of polypeptide
products of the transforming gene of Rous sarcoma virus and the homolo-
1980.
22. Sefton, B. M., Baker, B., Varmus, H. E., and Bishop, J. M. Characteristics of
cellular RNA related to the transforming gene of avian sarcoma viruses.
cellular RNA related to the transforming gene of avian sarcoma viruses.
related to the transforming gene of avian sarcoma virus are present in DNA
1978.
25. Specy, D., and Varmus, H. E., and Bishop, J. M. DNA related to the transfor-
mation gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature
26. Ziemiecki, A., and Fries, R. R. Simultaneous injection of newborn rabbits with
the Schmidt-Ruppin and Prague strains of Rous sarcoma virus induces
antibodies which recognize the pp60src of both strains. J. Gen. Virol., 50:
211-216, 1980.
Fig. 1. Demonstration of 32P-labeled pp60c-src in fish brain extracts. Track 1, immunoprecipitation of fish brain extracts, labeled before with [32P]P, in vitro, with TBR serum; Track 2, immunoprecipitation of the same extracts with normal rabbit serum. K, thousands.

Fig. 2. Demonstration of pp60c-src-associated protein kinase activity in extracts of different fish organs. K, thousands.

Fig. 3. Absorption inhibition assay. Track 1, the pp60c-src-associated kinase activity in the immunoprecipitates of equal amounts of fish brain extracts and pp60c-src antibodies; Track 2, the reduced pp60c-src-associated kinase activity in immunoprecipitates of fish extracts with TBR serum after incubation with heat-inactivated SR-A cell extract; Track 3, immunoprecipitates of the heat-inactivated SR-A extract after incubation with TBR serum and processing the samples for the kinase assay. K, thousands.
Identification of a Fish Protein Associated with a Kinase Activity and Related to the Rous Sarcoma Virus Transforming Protein

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/42/6/2429

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.