High Proliferation of Granulocyte-Macrophage Progenitors in Tumor-bearing Mice

Lodovico Balducci and Cheryl Hardy

Division of Hematology/Oncology, Veterans Administration Medical Center [L. B., C. H.], Jackson, Mississippi 39216

ABSTRACT

Cancer may affect hemopoiesis by altering the proliferative status of hemopoietic progenitor cells. In Lewis lung carcinoma (LLC), the proliferative rate of the granulocyte-macrophage colony-forming unit (culture) (GM-CFUc) was studied using in vivo hydroxyurea techniques. The disposal of mature elements to the periphery was also monitored during tumor growth. Neutrophilia, anemia, and splenic hypertrophy developed during the course of the disease. By Day 6 post-tumor implant, myeloid hyperplasia of the marrow was evident, but the content of GM-CFUc in LLC mice was similar to that of control. However, by Day 11, the marrow of LLC mice displayed an increased concentration of GM-CFUc, which tripled by Day 19. There was an increased percentage of proliferating GM-CFUc in LLC mice by Day 6 which was highest by Day 11 and thereafter declined. The level of colony-stimulating activity was higher in the serum of tumor bearers than in that of controls. The early increase in proliferative rate of these early hemopoietic precursors can account for the later accumulation of GM-CFUc and myeloid elements in the marrow. Increased cycling of hemopoietic stem cells raises questions concerning the potential for early exhaustion of hemopoietic progenitor cells in these animals.

INTRODUCTION

Hemopoietic alterations in the presence of cancer have been well documented (12, 14, 16, 17, 21, 22, 26). These alterations can occur in the absence of marrow invasion by the tumor. In the area of chemotherapy where marrow function is the limiting factor in treatment, such hemopoietic changes may modify the susceptibility of patients to treatment.

The present study deals with hemopoietic alterations in LLC-bearing mice. This tumor was used because, while it is a metastatic tumor, it does not directly involve the marrow. Using a clonal assay for the GM-CFUc, we have confirmed an expansion of these hemopoietic progenitor cells in the marrow of LLC mice. We have further demonstrated that this expansion is due to an increase in their proliferative pool.

MATERIALS AND METHODS

Experimental Animals and Tumor System. Male C57BL/6 mice (18 to 20 g; Charles River Breeding Laboratories, Wilmington, Mass.) were used. They were fed Purina laboratory chow and water ad libitum.

High Proliferation of Granulocyte-Macrophage Progenitors in Tumor-bearing Mice

Lodovico Balducci and Cheryl Hardy

Division of Hematology/Oncology, Veterans Administration Medical Center [L. B., C. H.], Jackson, Mississippi 39216

ABSTRACT

Cancer may affect hemopoiesis by altering the proliferative status of hemopoietic progenitor cells. In Lewis lung carcinoma (LLC), the proliferative rate of the granulocyte-macrophage colony-forming unit (culture) (GM-CFUc) was studied using in vivo hydroxyurea techniques. The disposal of mature elements to the periphery was also monitored during tumor growth. Neutrophilia, anemia, and splenic hypertrophy developed during the course of the disease. By Day 6 post-tumor implant, myeloid hyperplasia of the marrow was evident, but the content of GM-CFUc in LLC mice was similar to that of control. However, by Day 11, the marrow of LLC mice displayed an increased concentration of GM-CFUc, which tripled by Day 19. There was an increased percentage of proliferating GM-CFUc in LLC mice by Day 6 which was highest by Day 11 and thereafter declined. The level of colony-stimulating activity was higher in the serum of tumor bearers than in that of controls. The early increase in proliferative rate of these early hemopoietic precursors can account for the later accumulation of GM-CFUc and myeloid elements in the marrow. Increased cycling of hemopoietic stem cells raises questions concerning the potential for early exhaustion of hemopoietic progenitor cells in these animals.

INTRODUCTION

Hemopoietic alterations in the presence of cancer have been well documented (12, 14, 16, 17, 21, 22, 26). These alterations can occur in the absence of marrow invasion by the tumor. In the area of chemotherapy where marrow function is the limiting factor in treatment, such hemopoietic changes may modify the susceptibility of patients to treatment.

The present study deals with hemopoietic alterations in LLC-bearing mice. This tumor was used because, while it is a metastatic tumor, it does not directly involve the marrow. Using a clonal assay for the GM-CFUc, we have confirmed an expansion of these hemopoietic progenitor cells in the marrow of LLC mice. We have further demonstrated that this expansion is due to an increase in their proliferative pool.

MATERIALS AND METHODS

Experimental Animals and Tumor System. Male C57BL/6 mice (18 to 20 g; Charles River Breeding Laboratories, Wilmington, Mass.) were used. They were fed Purina laboratory chow and water ad libitum.

1 These works were supported in part by Veterans Administration Funds and by funds from the Ladies Auxiliary of the Veterans of Foreign Wars.

2 To whom requests for reprints should be addressed, at VA Medical Center, 1500 E. Woodrow Wilson, Jackson, Miss. 32216.

The abbreviations used are: LLC, Lewis lung carcinoma; GM-CFUc, granulocyte-macrophage colony-forming unit (culture); HBSS, Hanks' balanced salt solution; PI, post implant; CSA, colony-stimulating activity; HU, hydroxyurea; CFUc, colony-forming unit (culture); CFUc, colony-forming unit (spleen).

Received April 25, 1983; accepted July 12, 1983.

OCTOBER 1983 4643

"This work was supported in part by Veterans Administration Funds and by funds from the Ladies Auxiliary of the Veterans of Foreign Wars.

To whom requests for reprints should be addressed, at VA Medical Center, 1500 E. Woodrow Wilson, Jackson, Miss. 32216.

The abbreviations used are: LLC, Lewis lung carcinoma; GM-CFUc, granulocyte-macrophage colony-forming unit (culture); HBSS, Hanks' balanced salt solution; PI, post implant; CSA, colony-stimulating activity; HU, hydroxyurea; CFUc, colony-forming unit (culture); CFUc, colony-forming unit (spleen).

Received April 25, 1983; accepted July 12, 1983.

OCTOBER 1983 4643

"This work was supported in part by Veterans Administration Funds and by funds from the Ladies Auxiliary of the Veterans of Foreign Wars.

To whom requests for reprints should be addressed, at VA Medical Center, 1500 E. Woodrow Wilson, Jackson, Miss. 32216.

The abbreviations used are: LLC, Lewis lung carcinoma; GM-CFUc, granulocyte-macrophage colony-forming unit (culture); HBSS, Hanks' balanced salt solution; PI, post implant; CSA, colony-stimulating activity; HU, hydroxyurea; CFUc, colony-forming unit (culture); CFUc, colony-forming unit (spleen).

Received April 25, 1983; accepted July 12, 1983.

OCTOBER 1983 4643

"This work was supported in part by Veterans Administration Funds and by funds from the Ladies Auxiliary of the Veterans of Foreign Wars.

To whom requests for reprints should be addressed, at VA Medical Center, 1500 E. Woodrow Wilson, Jackson, Miss. 32216.

The abbreviations used are: LLC, Lewis lung carcinoma; GM-CFUc, granulocyte-macrophage colony-forming unit (culture); HBSS, Hanks' balanced salt solution; PI, post implant; CSA, colony-stimulating activity; HU, hydroxyurea; CFUc, colony-forming unit (culture); CFUc, colony-forming unit (spleen).

Received April 25, 1983; accepted July 12, 1983.
same test was used to compare the percentage of CFUc killed by HU in tumor-bearing and sham-injected mice.

CSA Studies. Serum was collected from LLC and sham-injected mice at Days 1, 7, and 19 of tumor growth and frozen. In a CFUc assay against fresh murine marrow target cells, the individual sera were substituted as the source of CSA at 15% final concentration. The resulting number of colonies was expressed as a percentage of control with mouse lung-conditioned media as the standard CSA. These experiments were repeated twice. A 2-sample t test was used to compare the colony-stimulating activity of LLC and sham sera (13).

A predominantly single-cell suspension of tumor cells at 10⁶ viable cells/ml was plated in 35-mm tissue culture dishes in Roswell Park Memorial Institute Medium 1640, penicillin-streptomycin, and 10% fetal calf serum and incubated for 7 days under standard conditions. Control dishes of complete media without cells were similarly treated. The conditioned and control media were harvested and concentrated 3-fold by dialysis against Carbowax polyethylene glycol 20,000. The samples were filter sterilized and substituted as the CSA in a CFUc assay at 15% final concentration.

RESULTS

Hematological Observations. LLC, palpable in the tumor-bearing mice by Day 3 PI, displayed a rapid Gompertzian growth pattern (Chart 1A). The median survival time was 22 days. LLC-bearing mice displayed hematological alterations during the course of tumor growth (Chart 1B to E). A progressive neutrophilia, anemia, and splenic hypertrophy developed in these mice, the anemia being evident in the early phases of tumor growth (Chart 1, B to D). Histological examination of the spleen showed a marked increase in hematopoietic activity with myeloid hyperplasia by Day 14. By Day 6, myeloid hyperplasia of the marrow was already present, while the blood neutrophilia was not yet detectable (Chart 1, C and E). There was no difference in marrow cell counts in LLC and sham-injected mice [Day 6 PI: LLC, 1.45 ± 0.03 (S.D.) x 10⁷ cells/femur versus sham, 1.32 ± 0.01 x 10⁷ cells/femur; Day 19 PI: 1.48 ± 0.15 x 10⁷ versus 1.40 ± 0.09 x 10⁷]. Marrow metastases were not present either histologically or by bioassay for tumor growth (11).

GM-CFUc Concentration. At Day 6 PI, when a myeloid hyperplasia was evident in the marrow (Chart 1E), the concentration of CFUc was the same in LLC and control mice (Chart 2). However, by Day 11, LLC mice displayed an incremental change in the concentration of CFUc (7,840 ± 300.8 versus 5,082.5 ± 353.3), which tripled by Day 19 PI as the disease advanced (21,088 ± 940.8 versus 8,317.5 ± 460.2). Cytospin preparations of representative colonies were identified histologically as either macrophage, granulocyte, or mixed. There was no change in distribution of these colony types in LLC or sham marrow and no evidence of abnormal-bearing colonies suggestive of tumor colonies in LLC marrow.

Stem Cell Kinetics. The percentage of CFUc killed in LLC and sham-injected mice with respect to 0.9% NaCl solution-treated...
controls showed that there was an increased proliferative rate of CFUc early in tumor growth, which declined by Day 19 PI (Table 1). At Day 6 PI, the percentage of CFUc killed in LLC mice was 52.2 ± 2.5% versus 29.8 ± 9.8% in sham-injected mice. This difference became greatest at Day 11 PI (56.2 ± 4.4% versus 22.2 ± 14%) and persisted through Day 14. By Day 19 PI, there was no difference in the percentage of CFUc killed in tumor-bearing and sham-injected mice.

CSA. To investigate one mechanism of increased myelopoiesis, sera collected at different times PI were assayed for their ability to stimulate CFUc. At Days 1, 7, and 19 of tumor growth, sera from LLC mice showed a higher level of CSA than did control sera (Table 2). In all serum samples (both LLC and sham), a qualitatively similar pattern of stimulation was observed, producing chiefly mixed granulocyte-macrophage colonies. In further experiments, granulocyte-macrophage CSA could be demonstrated in media conditioned by a preparation of cells from the tumor (Table 3). This activity could be detected after the media were concentrated 3-fold.

DISCUSSION

These data indicate an expansion of early myeloid precursors in the marrow of tumor-bearing mice. Such an expansion occurred in the absence of marrow metastases. This increase in GM-CFUc was attributable to accelerated cycling of these cells, detectable at Day 6 PI. CFUc began to accumulate in the marrow of LLC mice by Day 11 PI and progressed to 3 times normal concentration by Day 19 (Chart 2). The fraction of CFUc which was cycling in tumor-bearing mice was increased by Day 6, was highest by Day 11, and thereafter declined (Table 1). These data are quite compatible by assuming that there must be an increase in the proliferative rate of the CFUc before an accumulation of marrow CFUc and granulocytes is seen. Also, the Day 19 accumulation of the CFUc is a consequence of the earlier increased rate of production. A reason why these precursors accumulate at all despite the simultaneous occurrence of peripheral neutrophilia may be that they cannot be disposed of to the periphery as quickly as they are produced.

A possible mechanism through which the stem cells are triggered into cycle is by the direct (or indirect) action of the tumor through a CSA-like activity (26). If not elaborated by the tumor, such activity may originate in the tumor-stimulated immune system (26). The serum levels of such an activity were elevated at Days 1, 7, and 19 of tumor growth (Table 2). CSA was qualitatively similar at all 3 times assayed, inducing chiefly mixed GM-CFUc. Further experiments demonstrating CSA in the media from LLC cell preparations suggested that the tumor cells were a source of CSA. Obviously, our data do not rule out the possibility of additional sources of CSA originating in the immune system, nor do they address which cell type(s) in the increasing tumor load is responsible.

Increased serum CSA is associated with human and animal tumors (1, 7, 36). However, it is unlikely that CSA alone can account for all the observed hemopoietic changes in LLC. In the present work, it was not possible to correlate strictly the variations in CFUc proliferative status with the level of serum CSA. Also, we reported previously that CFUc are increased in LLC (2), and experiments to prove that CSA can induce the proliferation of the CFUc have not been reported.

The decline in the growth fraction at Day 19 cannot be explained on the basis of a decline in CSA, because our data indicate a continued elevation of this activity in the serum (Table 2). One could postulate the abatement of other undefined mye-lopoietins by Day 19. Also, local feedback inhibition may be operative within the hemopoietic tissue such that the CFUc accumulation becomes inhibitory to their further replication (15, 18).

A discussion of potential stimuli for stem cell proliferation must include the possibility of tumor-induced alterations of the hemopoietic microenvironment. The hemopoietic stroma has been well characterized in its effects on hemopoiesis (35). The suggestion that cancer alters the microenvironment is made by the results of DeGowin et al. (9) in which clonal growth of marrow fibroblasts is decreased in tumor-bearing animals.

Another possibility that may account for the decline in the growth rate of the CFUc by Day 19, and of more concern to the chemotherapist, is that the self-renewal capacity of the stem cells has been taxed to its maximum, and the decline in proliferative rate heralds imminent marrow failure. This study does not offer any data in support of this hypothesis; however, there is a growing body of data to support the concept of the finite nature of the hemopoietic stem cells (4, 20, 27). A progressive exhaustion of the CFUc self-renewal capacity was suggested by serial passages of marrow in lethally irradiated mice where the yield of CFUc decreased at each successive passage (27). On

Table 1

<table>
<thead>
<tr>
<th>Days PI of 10^6 LLC cells</th>
<th>% of GM-CFUc killed</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>52.2 ± 2.5</td>
<td>29.8 ± 9.8</td>
</tr>
<tr>
<td>11</td>
<td>56.2 ± 4.4</td>
<td>22.2 ± 14</td>
</tr>
<tr>
<td>14</td>
<td>36.3 ± 8.5</td>
<td>12.5 ± 5.6</td>
</tr>
<tr>
<td>19</td>
<td>16.6 ± 9.0</td>
<td>10.25 ± 12.2</td>
</tr>
</tbody>
</table>

*Two-sample t test (all p values are 2-tailed).
^Mean ± S.D.
NS, not significant.

Table 2

<table>
<thead>
<tr>
<th>Days PI of LLC</th>
<th>Tumor sera (%)</th>
<th>Sham (control sera) (%)</th>
<th>p^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68.6 ± 6.5</td>
<td>19.2 ± 3.9</td>
<td><0.001</td>
</tr>
<tr>
<td>7</td>
<td>70.7 ± 3.6</td>
<td>38.1 ± 4.0</td>
<td><0.001</td>
</tr>
<tr>
<td>19</td>
<td>73.8 ± 9.8</td>
<td>17.9 ± 4.2</td>
<td><0.001</td>
</tr>
</tbody>
</table>

^Tumor and control sera added at 15% final concentration in cultures.
6Two-sample t test (all p values are 2-tailed).
^Mean ± S.D.

Table 3

<table>
<thead>
<tr>
<th>CSA source</th>
<th>GM-CFUc/1.5 x 10^6 mononuclear cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditioned media from LLC cells (15%)</td>
<td>76 ± 9</td>
</tr>
<tr>
<td>Control media (15%)</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>Mouse lung-conditioned media (15%)</td>
<td>150 ± 13</td>
</tr>
<tr>
<td>None</td>
<td>1</td>
</tr>
</tbody>
</table>

5Final concentration in cultures.
6Mean ± S.D.
Questions have been raised concerning the stimulus for increased cycling of CFUs and CFUC in animal tumors (14, 17, 21, 26). Mizoguchi et al. (23) have described an increased growth fraction of CFUs and CFUC to account for the increased number of these elements in nude mice bearing a transplantable human lung tumor. Although this selected literature suggests the association of the tumor-bearing condition with increased hematopoietic progenitor proliferation, there is also literature contradicting such generalization. Reincke et al. (26) have addressed a question similar to ours in studying the rate of cycling of CFUs and CFUC in a murine granulocytosis-inducing mammary tumor. These progenitors remained low in the marrow as tumor growth progressed while the spleen compartment accumulated CFUs and CFUC. They were, however, unable to detect an increased growth fraction of the CFUs. In other experimental tumor systems, depressed erythropoietic activity, decreased marrow CFUC, and decreased stromal cell growth were suggested (3, 6, 8–10, 37).

We have shown that the GM-CFU proliferative rate is increased in mice bearing a metastatic tumor. Although this finding cannot be considered a generalized effect of all cancers, new questions have been raised concerning the stimulus for increased myeloid production in tumor-bearing animals, the role of splenic hemopoiesis, and the potential for early exhaustion of hematopoietic stem cells in these animals.

ACKNOWLEDGMENTS

We thank Drs. Martin Steinberg and Mehdi Tavassoli for suggestions concerning this manuscript, and Dr. Richard Guattieri, Charlottesville, Va., for suggestions on the preparation of conditioned media. We also thank Drs. David Ledney and Susan Weinberg, Bethesda, Md., for sharing their experiences with LLC.

REFERENCES

Increased CFUc in Tumor-bearing Mice

High Proliferation of Granulocyte-Macrophage Progenitors in Tumor-bearing Mice

Lodovico Balducci and Cheryl Hardy

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/43/10/4643

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.