H-2 Gene Control of Resistance to P815-X2 Mastocytoma

Larry W. Kwak, Omer Kucuk, Roger W. Melvold, and R. Michael Williams

Section of Medical Oncology, Departments of Medicine and Microbiology-Immunology and the Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611

ABSTRACT

Some, but not all, mutations at H-2 loci can alter, in either direction, histocompatible tumor resistance in the model system of P815-X2 mastocytoma (DBA/2 origin) transplanted into DBA/2J or (C57BL/6 × DBA/2J)F₁ mice. This hybrid effect has been shown previously to depend on the immune system. We have examined eight mutants at H-2K⁺ (bm1, bm4, bm6, bm7, bm8, bm10, bm11, and bm16), two at H-2D⁺ (bm13 and bm14), and one I-A⁺ mutant (bm12). When one parent is an H-2⁺ mutant (C57BL/6 mutant), the hybrid progeny (C57BL/6 mutant × DBA/2J)F₁ may have increased (bm7 and bm8) or decreased (bm10, bm11, bm12, and bm16) survival times when compared to (C57BL/6 × DBA/2J)F₁ controls. Hybrids from bm1, bm4, bm6 (all H-2K⁺), and bm13 and bm14 (both H-2D⁺) mutants showed no differences in survival. Several of the mutant molecules differ from those of the parental strain by only one or two amino acids. Apparently, these small changes in H-2 antigens are capable of altering resistance to a histocompatible tumor to produce an immune response gene-like effect.

The availability of H-2 mutant strains and detailed data on the molecular nature of the gene products make the model presented in this report a particularly useful system to study.

INTRODUCTION

The major histocompatibility system of the mouse, H-2, originally of interest to immunologists primarily because of its role in tissue graft rejection, has grown to provide results of major importance for both general immunobiology and immunoregulation. A substantial number of traits appear to be controlled by the H-2 system (6), several of which have potential relevance to tumor biology; e.g., rejection of tumors in allogeneic systems. It is also widely accepted that genetic factors may be important in determining the ability of the host to mount a specific immune response to a neoplasia, but the particular genetic contributions remain unclear, primarily because of a dearth of good allogeneic experimental models.

The phenomenon of resistance to histocompatible tissue in F₁ hybrids has been studied for many years. The 2 basic systems are transplantation of nonmalignant parental-type bone marrow cells or the transplantation of malignant tumors to F₁ hybrids. The former system, referred to as hybrid resistance or the hematopoietic histocompatibility phenomenon, has been studied and described in detail by Cudkowicz et al. (2–4). It is most easily demonstrable in irradiated F₁ hybrid mice given injections of parental bone marrow and is thought to be associated with radioresistant natural killer cell activity. The latter system, the phenomenon under study in this paper, has been called allogeneic inhibition, syngeneic preference, or, more simply, the "hybrid effect" (5, 19), and has been of interest to tumor immunologists and immunogeneticists because of its potential for unraveling some mechanisms of tumor resistance. As has been described previously parental tumors often grow less well in their F₁ hybrids than in the strain of origin even though the F₁ hybrid recipients and parental strain tumors are theoretically histocompatible. This hybrid effect has been shown to be linked to the H-2 complex (5) and, in our system, it can be transplanted into lethally irradiated parental-strain mice with anti-Thy-1 + complement-treated F₁ bone marrow, strongly suggesting that the mechanism of the hybrid effect in our model involves the immune system (21). The working hypothesis is that the superior histocompatible tumor resistance of F₁ hybrids is due to the contribution of immune response genes by the allogeneic parent which might heighten immune responsiveness against weak tumor-associated antigens.

Using H-2 congenic lines and H-2 recombinant strains available at the time, we initiated a series of experiments in 1975 to examine the role of the H-2 complex genes in histocompatible tumor resistance (20). Results from these experiments suggested that more than one H-2 gene was involved and led to the conclusion that tumor resistance in this model could not be attributed to simple I-region control via a single dominant immune response gene. However, the material available for the studies at that time did not permit the precise localization of the H-2 genes involved.

The recent introduction of H-2 mutants provides a unique opportunity to investigate the effects of specific H-2 genes on immune functions. Using mouse lines bearing mutations in the H-2⁺ haplotype, alterations in a single gene arising from various point mutations, single genes can be examined for effects on tumor resistance. Realizing this opportunity, we initiated studies in the model system of P815-X2, a lethal mastocytoma of DBA/2 origin, transplanted into DBA/2 and (DBA/2 × C57BL/6)F₁, or (DBA/2 × C57BL/6 mutant)F₁ hybrids. By comparing the survival of (DBA/2 × C57BL/6)F₁ and (DBA/2 × C57BL/6 mutant) F₁ mice after injection of P815-X2, where the C57BL/6 mutant differs from C57BL/6K only at H-2K⁺, we found that differences in the H-2K⁺ gene alone could profoundly influence survival (22). The results we present here represent a broad sampling of the H-2 complex using almost all of the available H-2⁺ mutants and extend those initial observations. Because biochemical studies reveal differences of only one or 2 amino acids between mutant and wild-type H-2K⁺ molecules (16), the data presented demonstrate that subtle amino acid changes in a single gene product of the major histocompatibility complex can influence histocompatible tumor resistance.

MATERIALS AND METHODS

Tumor Preparation. The P815-X2 tumor, a long-passaged mastocytoma of DBA/2 origin, was obtained from Dr. Eric Martz (University of
Massachusetts, Amherst, Mass.) and was passaged in excess of 15 times in DBA/2J mice prior to cryopreservation. For each experiment, 5 x 10^6 viable tumor cells from this cryopreserved stock were thawed and injected i.p. for a single passage of 13 days duration in a DBA/2J animal.

Mice. Two inbred mouse strains, DBA/2J and C57BL/6Kh, were used. The former line was obtained from The Jackson Laboratory, and the latter was from our colony at Northwestern University. All of the known H-2 mutations were selected by screening for unexpected graft rejection and frequently occurred without dramatic serologically detectable alterations in cell surface specificities (7). Most of the mutations have been derived from the H-2K^b gene, and many of these mutant antigens have been biochemically characterized (16). All mutant strains are congenic or cosogenic on the C57BL/6Kh background. Shown in Table 1, they consist of 8 mutations of H-2K^b, 2 of H-2D^b, and one of I-A^b. For simplicity, the mutants are referred to in the text by their superscripts. All F1 hybrids were bred in our animal facilities; breeders from mutant strains bm1, bm4, and bm14 were originally received by courtesy of D. W. Bailey and maintained thereafter in our facility.

Injection of Tumor. Hybrid progeny, about 10 weeks of age and age-matched to within approximately 21 days of each other, from matings of C57BL/6Kh or C57BL/6 mutant females with DBA/2J males were given injections of 10^6 viable P815-X2 tumor cells in a 0.05-ml volume s.c. through the left rear footpad using a separate 30-gauge needle for each mouse. Injections for each experiment were made from the same suspension of tumor cells, which had been passaged once in a DBA/2J mouse.

Analysis of Data. Mice were checked daily to determine the date of death. The statistical comparisons were done using the Mantel-Cox logrank test (17), and p values of <0.05 are considered significant regardless of absolute differences in the median survival times.

RESULTS

Growth of Tumor and Differential Resistance to Tumor. All animals developed swelling of the left rear footpad shortly after injection of the tumor and the progressively growing tumors enlarged in size until death of the host. Unequivocal differences in survival were found between C57BL/6Kh X DBA/2J F1 (hereafter called B6D2F1) and some C57BL/6 mutant X DBA/2J F1 (hereafter called B6"D2F1) hybrid progeny. The earliest deaths, which were usually in the syngeneic control group (DBA/2J), occurred around Day 14, and all animals were dead by Day 60. There were no long-term survivors.

Results are based on the analysis of survival of female hybrids only, because surprisingly significant differences in survival were also found between F1 hybrid females and males. This sex effect is possibly due to an X-linked histoincompatibility to the P815-X2 tumor (H-X") in male F1 hybrids; within a single strain, it is always the male hybrids that survive longer than the female hybrids. As would be predicted, no such effect was observed for homozygous DBA/2J controls. This apparent response to H-X" is described in detail in a separate report (9).

It is important to note that differences in the absolute magnitudes of the median survival times between identical strains in separate experiments may reflect numerous variables and, as such, cannot be legitimately compared.

Genetics of Resistance to P815-X2. Hybrid progeny of 5 of the 8 tested mutants at H-2K^b and the I-A^b mutant, bm12, differed significantly (p < 0.05) in resistance to the tumor when compared to B6D2F1 controls. Furthermore, the differences in survival relative to B6D2F1, determined by these mutations were in both directions; i.e., either longer or shorter survival, depending on the mutation.

Hybrids from bm7 and bm8 demonstrated significantly increased survival times compared to controls (Table 2).

In contrast, hybrids from bm10 (Table 2) [bm11, bm12, and bm16 (Table 3)] demonstrated shorter survival times compared to controls. The results from bm11 and bm12 hybrids confirm the significantly shorter survival times associated with these 2 mutations observed in our initial studies (22).

Of special interest are the results with bm10 hybrids. The single amino acid change of Val —» Met at Residue 165 (and possibly one additional amino acid change) in the H-2K molecule of bm10 (Table 1) was associated with disappearance of the hybrid effect altogether; i.e., bm10 hybrid progeny showed no advantage in survival over homozygous DBA/2J controls after injection of the tumor (p = 0.852) (Table 2).

Hybrids from bm1, bm4, bm6, and both H-2D^b mutants (bm13 and bm14) failed to exhibit significant differences in survival when compared to B6D2F1 controls (Tables 2 and 3).

DISCUSSION

Our studies in the P815-X2 hybrid effect model support 2 overall conclusions. (a) Some, but not all, modifications in H-2^b gene products are capable of modifying the resistance to histocompatible tumor (for summary of results, see Table 1, footnote). These experiments implicate the independent roles of more than one H-2 gene in the hybrid effect. (b) The results from these studies offer unexpected evidence for the role of Class I molecules in controlling immune responses, since immune response genes are generally thought to be localized to the I-region of the H-2 complex. There are at least 4 other reports of H-2-linked immune response genes which map outside of the I-region (8, 18, 23, 24). Experiments with hybrid progeny from bm12, the only existing I-region mutant, nonetheless suggest that I-region immune-response control of histocompatible resistance to P815-X2 is also present and important (Table 3) (22). Several points concerning the results deserve further comment. Two H-2^b mutant strains, bm7 and bm8, when compared...
onstrate significantly increased (or decreased) survival when compared to B6D2F1 controls. Since bm6 is coisogenic (recovered in a cell-mediated cytotoxicity (12); yet, only bm7 hybrid progeny to be otherwise indistinguishable from bm6 by skin grafting and reactions 116 and 121 of the H-2K molecule (Table 1) and appears to H-26 are associated with longer survival times after injection of numbers of mice tested for hybrids from bm11 and bm12 (22).

Whether these immune response-like genes function through the fact that tumors may have numerous antigens, it is not possible to rule out the important of D-region genes (H-2D, H-2L, H-2M, and H-2R) in the control of histocompatible tumor resistance. The novel feature of these experiments is the introduction of increased precision into the analysis of the roles of single H-2 genes in tumor resistance. Investigations into the mechanisms that account for survival differences among the F1 hybrids after injection with the same histocompatible tumor should be informative. In other words, how do changes as subtle as a single amino acid difference in H-2 molecules produce such dramatic changes in survival? Reference may be made to other well-known H-2-linked phenomena that are controlled by more than one gene. These include, for example, the mixed lymphocyte reaction and the graft-versus-host reaction. In consideration of the fact that tumors may have numerous antigens, it is not unlikely that responsiveness to such different antigens may be controlled by different major histocompatibility complex genes having immune responses or immune response-like properties. Whether these immune response-like genes function through independent mechanisms or by some type of genetic interaction remains to be seen.

There are indications in other systems that genes with immune response-like functions might be located outside the I-region of the mouse. Schmitt-Verhulst and Shearer (18) demonstrated that the generation of cytotoxic effector cells to trinitrophenyl-modified self components was under the control of genes mapping in the K- as well as I-regions of H-2. Zaleski and Klein (23), using the H-2 mutant, CBA-H-2B10, have shown that one of the genes controlling the plaque-forming cell response to the Thy-1.1 antigen apparently resides in the K-region and might even be identical with the H-2K loci. Further studies using H-2 mutants have revealed genes controlling the primary antibody immune response to Thy-1 antigens in both the K- and D-regions (24). Recently, studies of the regulation of the autoimmune response to mouse thyroglobulin have demonstrated genetic interaction.

Table 2
P815-X2 resistance in (C57BL/6K or C57BL/6 mutant) × DBA/2J hybrids (females): Experiment 1

<table>
<thead>
<tr>
<th>Mother × Father</th>
<th>No. tested</th>
<th>Median</th>
<th>Mean ± SE</th>
<th>Difference from C57BL/6K (p)</th>
<th>Difference from DBA/2J (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBA/2J</td>
<td>19*</td>
<td>22</td>
<td>22.4 ± 1.50</td>
<td>0.0002</td>
<td>0.6646</td>
</tr>
<tr>
<td>C57BL/6K</td>
<td>19</td>
<td>28</td>
<td>28.8 ± 2.00</td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td>B6-C-H-2<sup>116</sup></td>
<td>15</td>
<td>31</td>
<td>32.3 ± 2.00</td>
<td>0.0065</td>
<td><0.0001</td>
</tr>
<tr>
<td>B6-H-2<sup>116</sup></td>
<td>12</td>
<td>29</td>
<td>30.3 ± 1.90</td>
<td>0.0065</td>
<td>0.0004</td>
</tr>
<tr>
<td>B6-C-H-2<sup>111</sup></td>
<td>14</td>
<td>33</td>
<td>33.6 ± 2.70</td>
<td>0.0020</td>
<td>0.0001</td>
</tr>
<tr>
<td>B6-H-2<sup>111</sup></td>
<td>12</td>
<td>33</td>
<td>35.8 ± 3.20</td>
<td>0.0009</td>
<td><0.0001</td>
</tr>
<tr>
<td>B6-C-H-2<sup>110</sup></td>
<td>23</td>
<td>23</td>
<td>23.5 ± 1.20</td>
<td>0.0002</td>
<td>0.8520</td>
</tr>
<tr>
<td>B6-H-2<sup>110</sup></td>
<td>29</td>
<td>31</td>
<td>37.7 ± 2.80</td>
<td>0.0774</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

⁴ Includes both female and male (homozygous) DBA/2J since they are identical for H-X and in their survival times. For all other strains, male hybrids are not included in the analysis because of an apparent X-linked histoincompatibility (9).

⁵ Comparable results were obtained in 2 to 3 separate experiments with similar numbers of mice tested for hybrids from bm11 (22) and bm8 and bm10.

Table 3
P815-X2 resistance in (C57BL/6K or C57BL/6 mutant) × DBA/2J hybrids (females): Experiment 2

<table>
<thead>
<tr>
<th>Mother × Father</th>
<th>No. tested</th>
<th>Median</th>
<th>Mean ± SE</th>
<th>Difference from C57BL/6K (p)</th>
<th>Difference from DBA/2J (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBA/2J</td>
<td>26</td>
<td>22</td>
<td>21.1 ± 1.50</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>C57BL/6K</td>
<td>15</td>
<td>31</td>
<td>32.7 ± 1.90</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>B6-C-H-2<sup>116</sup></td>
<td>10</td>
<td>30</td>
<td>31.4 ± 3.00</td>
<td>0.8542</td>
<td><0.0001</td>
</tr>
<tr>
<td>B6-C-H-2<sup>111</sup></td>
<td>19</td>
<td>27</td>
<td>27.8 ± 1.40</td>
<td>0.0072</td>
<td><0.0001</td>
</tr>
<tr>
<td>B6-C-H-2<sup>112</sup></td>
<td>24</td>
<td>27</td>
<td>27.7 ± 1.10</td>
<td>0.0044</td>
<td><0.0001</td>
</tr>
<tr>
<td>B6-H-2<sup>110</sup></td>
<td>14</td>
<td>30</td>
<td>31.1 ± 3.10</td>
<td>0.6646</td>
<td><0.0001</td>
</tr>
<tr>
<td>B6-H-2<sup>111</sup></td>
<td>8</td>
<td>27</td>
<td>27.4 ± 1.50</td>
<td>0.0139</td>
<td>0.0117</td>
</tr>
</tbody>
</table>

⁶ Includes both female and male (homozygous) DBA/2J since they are identical for H-X and in their survival times. For all other strains, male hybrids are not included in the analysis because of an apparent X-linked histoincompatibility (9).

⁷ Comparable results were obtained in 1 to 2 separate experiments with similar numbers of mice tested for hybrids from bm11 and bm12 (22).

L. W. Kwak et al.
between I-region and D-end gene products (8). Using H-2 mutants, the model system of hybrid resistance to P815-X2 has potential for producing new insights into the relationship between genes and immune functions in a model pertinent to the regulation of autochthonous tumor growth.

Since the discovery of the first H-2 mutation 16 years ago (1), H-2 mutations have made increasing contributions to immunology, (7, 10; for a review, see Ref. 6). For example, H-2 mutations have been invaluable in studies demonstrating that single loci control responses such as the mixed-lymphocyte reaction and the graft-versus-host reaction (6) and particularly as models for the study of T-cell activation (11). The available evidence suggests that most of the H-2 variants are true mutations which can be attributed to nucleotide substitutions (6, 7, 16).

We are currently investigating the potential roles of C57BL/6 background genes in histocompatible resistance to P815-X2. Construction of F1 hybrids between recombinant-inbred strains with the various H-2" genes already shown to control the response to histocompatible tumor. The precedent for this type of interaction has already been established in minor histocompatibility antigens (13, 14).

ADDITIONAL SUPPORT

After this paper went to press, further evidence became available indicating that the H-2 variants are germ-line mutations attributable to changes in DNA sequences (25, 26).

ACKNOWLEDGMENTS

The authors gratefully acknowledge the skillful technical assistance of Bonnie Beck-Maier and Peter Kerstan. and Dan Garside for his assistance in the computerized statistical analyses. We wish to thank Nirsa N. Cortez and Carol Lobbes for typing of the manuscript.

REFERENCES

H-2 Gene Control of Resistance to P815-X2

Downloaded from cancerres.aacrjournals.org on April 26, 2017. © 1983 American Association for Cancer Research.
H-2 Gene Control of Resistance to P815-X2 Mastocytoma

Larry W. Kwak, Omer Kucuk, Roger W. Melvold, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/43/12_Part_1/5754

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.