Enhancement of Antitumor Activity of Ascorbate against Ehrlich Ascites
Tumor Cells by the Copper:Glycylglycylhistidine Complex

Eiji Kimoto, Hidehiko Tanaka, Junichiro Gyotoku, Fukumi Morishige, and Linus Pauling

Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814, Japan [E. K., H. T., J. G.]; Tachiarai Hospital, Fukuoka 838, Japan [F. M.]; and Linus Pauling Institute of Science and Medicine, Palo Alto, California 94306 [L. P.]

ABSTRACT

Ascorbate in an aqueous solution is easily oxidized by molecular oxygen in the presence of cupric ion, thus producing reactive oxygen species and exhibiting cytotoxicity.

In order to increase the antitumor activity of ascorbate, we used the innocuous form of cupric ion complexed with glycylglycylhistidine, a tripeptide designed to mimic the specific Cu(II) transport site of albumin molecule. Although this square planar copper:glycylglycylhistidine complex did not significantly oxidize ascorbate at pH 7.4, it killed Ehrlich ascites tumor cells in vitro in a high concentration of ascorbate. The injections of large doses of ascorbate together with copper:glycylglycylhistidine prolonged the life span of mice inoculated i.p. with Ehrlich tumor cells. The target specificity against tumor cells was primarily attributable to their high peptide-cleaving activity.

INTRODUCTION

Ascorbate in an aqueous solution is easily oxidized by oxygen in the presence of transition metal ions and produces reactive oxygen species (5). The reaction path for the metal-catalyzed oxidation of ascorbate by oxygen was proposed by Taqui Khan and Martell (22) to involve molecular oxygen bound to the metal:ascorbate complex causing an electron transfer within the complex from ascorbate anion to metal ion and generating the partially reduced oxygen species.

Malignant cells of several different types have been shown to have lowered levels of reactive oxygen-scavenging enzymes which should be primary factors in the biological defense against oxidative stress (3, 12, 15). High-energy irradiation and some cytotoxic antitumor drugs (13, 20), which cause the formation of reactive oxygen species in biological systems, have injurious effects on the viability of malignant cells. Therefore, ascorbate in certain circumstances should be considered to exhibit potent cytotoxicity against malignant cells.

Several investigators have already pointed out the cytotoxicity of a large intake of ascorbate, in the presence of cupric ion, against tumor cells. Yamafuji et al. (23) disclosed that ascorbate, in cooperation with cupric ion, had a strong inhibitory potency against the growth of Sarcoma 180 implanted i.p. in mice. Stich et al. (19) pointed out the enhancement of chromosome-damaging action of ascorbate by transition metal ions. Bram et al. (4) reported that ascorbate possessed a preferential toxicity against malignant melanoma cells due to their elevated copper concentration.

Cupric ion is, however, protein avid. An excess of copper has toxic effects in a wide variety of animals and in humans (17). In the presence of ascorbate, naked cupric ion may exert damaging action to malignant cells as well as normal cells.

Serum albumin is a physiologically important Cu(II) transport protein. GGH is a tripeptide designed to mimic the specific Cu(II) transport site of the albumin molecule (8). Accordingly, the copper:GGH complex may be considered as an innocuous form of cupric ion.

The present paper deals with the in vitro and in vivo antitumor activity of ascorbate and copper:GGH complex against Ehrlich ascites tumor cells and with the mechanism of its target specificity against malignant cells.

MATERIALS AND METHODS

Chemical Reagents. GGH was synthesized according to the method of Lau et al. (8). The purity was checked by thin-layer chromatography. Catalase (2400 units/mg) from bovine liver was purchased from Sigma Chemical Co., St. Louis, Mo. All other chemicals were of analytical reagent grade.

The 1:1 mixture (molar ratio) of cupric chloride and GGH was dissolved in Krebs-Ringer phosphate-buffered saline and adjusted to pH 7.4 by adding a few drops of concentrated sodium carbonate solution. The absorption maximum and extinction coefficient of the complex was 526 nm and 86 μm−1 cm−1, respectively.

ESR Studies. ESR spectra were obtained using a JEL-FE 1X spectrometer, JEOL, Ltd., Tokyo, Japan. The spectra of the copper complexes were measured at liquid nitrogen temperature (−196°), and those of ascorbate radicals and spin-trapped radicals were measured at room temperature. ESR signals were obtained as the first derivative of the absorption. The g-values and hyperfine splitting constant were determined by comparison with the standard of Mn(II) in MgO.

Oxidation of Ascorbate and Epinephrine and the Spin-trapping of Short-lived Radical Intermediates. The rate of oxidation of ascorbate in the presence of cupric ion or copper:GGH complex was measured by the decrease in UV absorption at 265 nm.

Hydrogen peroxide was determined using leuko crystal violet and horseradish peroxidase as catalyst, according to the method of Motojila et al. (10). The formation of oxygen-centered radicals, superoxide radical and hydroxyl radical, was observed by the spin-trapping technique using BPN as a spin adduct, as adapted for the Fe(II):bleomycin:O2 system (20). The oxidation of epinephrine in the presence of cupric ion or copper:GGH was examined in terms of the production of adrenochrome (9), which had an absorption maximum at 480 nm.

Cytotoxicity Test in Vitro. Ascites of ddY mice, 10 to 12 days after i.p. inoculation with Ehrlich tumor cells, was used for the cytotoxicity test. Tumor cells (105 cells/ml) in Krebs-Ringer medium at pH 7.4 were incubated at 37° with varied concentrations of ascorbate and cupric ion or copper:GGH for varying periods of time and assayed for their cell viability.

1 This study was supported by research grants from Central Research Institute of Fukuoka University, Fukuoka, Japan.

2 Nonresident Fellow of Linus Pauling Institute of Science and Medicine.

Received May 14, 1982; accepted November 5, 1982.

824 CANCER RESEARCH VOL. 43

CANCER RESEARCH 43, 824–828, February 1983
0008-5472/83/0043-0000502.00
viability by trypan blue dye exclusion test. The inhibitory effect of catalase upon the cytotoxicity was investigated.

Spleen cell suspension of ddY mouse was prepared by passing the minced spleen suspension in cold Eagle's minimal essential medium through a 100 mesh stainless sieve. It was used for the cytotoxicity test as a reference.

Analysis of the Change of the Copper:GGH Complex After Incubation in Tumor Cell Suspension. Tumor cell suspension in Krebs-Ringer medium (10^5 cells/ml) in the presence or absence of 10^{-4} M ascorbate was added with copper:GGH at the final concentration, 10^{-4} M, and incubated at 37°C for 30 min. It was deproteinized with picric acid, passed through the Dowex 1-X8 column, and analyzed for ninhydrin-positive compounds with an amino acid analyzer. ESR spectra of copper:GGH (10^{-4} M) were measured after incubation in tumor cell suspension in the presence of 10^{-4} M ascorbate.

Antitumor Activity in Vivo. Two-tenths ml of ascites fluid containing 5 x 10^5 Ehrlich tumor cells was inoculated i.p. into ddY mice weighing about 25 g. Forty-eight hr after this inoculation, 0.2 ml of sodium ascorbate and/or copper:GGH was injected i.p. each day for 12 days. Increase in life span calculated on the basis of the mean survival time of the treated relative to the control animals and the number of 60-day survivors were used for the expression of antitumor activity of compounds.

RESULTS

The ESR spectrum of the copper:GGH complex at -196° (Chart 1) is quite similar in shape and in g-values to that of the copper:macrocyclic dioxotetraamine complex possessing a quadridentate coordination (6). It has an intense signal at g-value lower than the perpendicular component (g_p) due to an overshoot phenomenon which occurs from the particular angular dependence. The g_1 value and calculated hyperfine coupling constant |A_1| are plotted on a scheme g_1 versus |A_1| for CuS_4, CuN_4, and CuO_4 complexes (Chart 2), as reported by Yokoi and Addison (24). The magnetic parameter of the copper:GGH complex places it at the low g_1 and high |A_1| extreme on the CuN_4 line, indicating the highest degree of square planar conformation and electron-donating ability among CuN_4 complexes. The stability of this complex at pH 7.4, as shown by Sakurai and Nakahara (16), is as high as those of macrocyclic tetraamine complexes. Accordingly, GGH may coordinate around cupric ion (Chart 3) through the α-amino nitrogen of NH_2-terminal glycine, 2 intervening peptide nitrogens, and an imidazole nitrogen of histidine.

The time course of ascorbate oxidation in the presence of cupric ion or copper:GGH complex is shown in Chart 4. Although cupric ion greatly accelerates the ascorbate oxidation, copper:GGH accelerates it only slightly.

After 10 min of incubation of the mixture of 2.5 x 10^{-4} M ascorbate and 2.5 x 10^{-6} M cupric ion at 37°C, 34 μg of H_2O_2 per 100 ml is detectable. The ESR signal of spin-trapped BPN (Chart 5) after an addition of BPN is demonstrable, beside the doublet signal of ascorbate radical (7). This indicates the occurrence of oxygen-centered radicals in this reaction mixture, as found in the Fe(II):bleomycin:O_2 system (20). Instead, copper:GGH, even at 2.5 x 10^{-5} M, produces neither a detectable amount of H_2O_2 nor an ESR signal of spin-trapped BPN at any time during 30-min incubation.

The Cu(II) catalysis of epinephrine oxidation is also strongly inhibited by the complex formation with GGH as with EDTA.
Chart 4. Oxidation of ascorbate (decrease in absorbance) in the presence of cupric ion or copper:GGH complex. Ascorbate, 10^{-3} M, in Krebs-Ringer medium of pH 7.4. 1, cupric ion, 10^{-4} M; 2, cupric ion, 10^{-5} M; 3, cupric ion, 10^{-6} M; 4, copper:GGH, 10^{-5} M; 5, without cupric ion or copper:GGH.

Chart 5. Spin-trapping of oxygen-centered radicals by BPN. It is measured at 9.43 GHz with 100 kHz modulation and at 25 milliwatts microwave power. All of the reagents are dissolved in Krebs-Ringer medium at pH 7.4. 1, mixture of 0.1 ml of 10^{-4} M cupric ion, 0.1 ml of 10^{-3} M ascorbate, and 0.2 ml of Krebs-Ringer medium; 2, mixture of 0.1 ml of 10^{-5} M cupric ion, 0.1 ml of ascorbate, and 0.2 ml of 0.08 M BPN; 3, mixture of 0.2 ml of 0.08 M BPN and 0.2 ml of Krebs-Ringer medium.

Cupric ion, possessing a relatively high oxidation-reduction potential and coordinating to ascorbate anion or epinephrine, is easily reduced by these reducing agents, whereas the mononuclear planar copper:GGH complex is not. As mentioned by Taqui Khan and Martell (22), the complex formation with increased stability and lowered oxidation-reduction potential decreases the metal-catalyzed oxidation of these biological reducing agents.

Amino acid analysis (Chart 6) indicates that, after 30 min incubation at 37° of Ehrlich tumor cell suspension plus copper:GGH, the peak of GGH disappears with an increase of NH$_3$ but without change in histidine peak. Tumor cells possessing a high peptidase activity, as reported by Sylvén and Boiss-Svensson (21), cause a hydrolytic cleavage of this tripeptide. If the released histidine remains intact, its peak should become much higher. It may be utilized by tumor cells and decomposed at least in part to NH$_3$. With or without 10^{-4} M ascorbate, a similar change in the amino acid elution pattern is demonstrable. Thus, in contact with tumor cells, the copper:GGH complex undergoes cleavage to release free cupric ion. ESR analysis indicates that, after incubation with 10^{-4} M ascorbate, the ESR signal of copper:GGH disappears almost completely. Without tumor cells, however, such a remarkable decrease in ESR signal does not occur. After incubation in a suspension of spleen cells or RBC, this complex undergoes no significant change.

The results of cytotoxicity of ascorbate and cupric ion or copper:GGH against Ehrlich tumor cells in vitro are shown in Chart 7. Cupric ion, in the presence of ascorbate, possesses a strong killing effect. At higher concentrations of both ascorbate and cupric ion, the percentage of dead (stained) cell increases. The killing effect of copper:GGH is much less com-
pared with free cupric ion. In the presence of 10^{-4} M ascorbate (1.76 mg/100 ml, corresponding to the blood plasma level of a human adult after an administration of several g of ascorbate, approximately to the kidney threshold value), copper:GGH exhibits the cytotoxicity to an appreciable extent. However, in a lower concentration, 10^{-5} M of ascorbate (0.176 mg/100 ml, corresponding to plasma level without supplemental ascorbate), copper:GGH does not show a significant tumor-killing effect. Although Benade et al. (1) reported that ascorbate at an extremely high concentration is lethal to Ehrlich tumor cells, ascorbate by itself does not show any significant cytotoxicity at the level of kidney threshold value.

The tumor cell-killing action of ascorbate and copper:GGH is completely inhibited by addition of catalase (600 units/ml). It appears to be due to the formation of H_2O_2 and the subsequent appearance of higher reactive radicals, as mentioned by Stich et al. (19), on the mitosis-inhibiting and chromosomedamaging action of ascorbate:transition metal against Chinese hamster ovary cells.

Microscopic observations reveal that ascorbate and copper:GGH cause blebbing of tumor cells before the appearance of stained cells while leaving the nuclei apparently intact. The bleb formation is much more remarkable in the presence of free cupric ion in place of copper:GGH. Although cupric ion together with ascorbate causes marked damage to spleen cells and to RBC, copper:GGH does not.

In vivo antitumor activity of ascorbate and copper:GGH is shown in Chart 8. Copper:GGH alone does not show an antitumor activity. Ascorbate by itself shows only weak activity. The administration of both ascorbate and copper:GGH exhibits much greater activity. Increase in life span (%) is 0 for the copper:GGH group, a little more than 24 for the ascorbate group, and much more than 64 for the ascorbate:(copper:GGH) group. The 60-day-surviving mice reject the tumor growth even after i.p. injection is repeated each day for 12 days. For the control group, the same amount of 0.9% NaCl solution is injected.

Microscopic observations in vitro reveal that the copper:GGH complex in the presence of high concentrations of ascorbate causes the blebbing and killing of tumor cells while leaving the nuclei apparently intact. DNA-damaging or mutagenic properties of ascorbate and cupric ion have been demonstrated on bacteriophage (11) and even on eukaryotic cells (18, 19). Although the reaction of copper:GGH is mild, it may have some DNA-damaging effects, as seen in any H_2O_2-producing compounds.

The i.p. administration of both ascorbate and the copper:GGH complex increases significantly the life span of mice after an inoculation of Ehrlich ascites tumor cells. However, ascorbate or copper:GGH alone has only weak effects. Ascorbate, which undergoes an enhancement of tumor-killing activity by copper:GGH, may be expected to behave similarly in vivo.

Ascorbate and the copper:GGH system exerts mild carcinostatic effects. Maximum effect corresponds to a survival of about one-half of tumor-inoculated mice. Such host-nontoxic compounds, although exerting a mild cytotoxicity to malignant cells, may be promising for cancer chemotherapy.

REFERENCES

Enhancement of Antitumor Activity of Ascorbate against Ehrlich Ascites Tumor Cells by the Copper:Glycylglycylhistidine Complex

Eiji Kimoto, Hidehiko Tanaka, Junichiro Gyotoku, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/43/2/824

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.