Comparison of in Vitro Methods for Assessing Cytotoxic Activity against Two Pancreatic Adenocarcinoma Cell Lines

Barbara K. Chang

Department of Medicine, Section of Hematology/Oncology, Medical College of Georgia, and Veterans Administration Medical Center, Augusta, Georgia 30910

ABSTRACT

Several models of pancreatic adenocarcinoma are now available for experimental evaluation of newer chemotherapeutic agents. The present study represents an attempt to develop a rapid in vitro screening technique that would allow prediction of cytotoxic activity (or lack thereof) as reliably as the clonogenic or colony formation assay. To this end, seven drugs (cisplatin, daunomycin, doxorubicin, 5-fluorouracil, menogarol, mitoxantrone, and streptozocin) were tested against two pancreatic adenocarcinoma cell lines using a standard colony formation assay and a 24-hr microcytotoxicity assay. The cell lines tested were PANC-1, of human poorly differentiated pancreatic adenocarcinoma origin, and WD PaCa, of hamster well-differentiated pancreatic adenocarcinoma origin. The dose-survival curves and resulting determinations of drug dose (µg/ml/1-hr exposure) at which there is a 50% inhibition of survival as compared to controls were compared for the two cell lines by each assay system. Lack of correlation of the two assays and considerable interdrug and inter-cell line variation were found. In addition, the microcytotoxicity assay was felt to underestimate the in vitro drug sensitivity of PANC-1 to three drugs (daunomycin, doxorubicin, and mitoxantrone) and of WD PaCa to two drugs (5-fluorouracil and mitoxantrone). Despite the possible utility of the microcytotoxicity assay with other experimental models, the colony formation assay technique appears to provide the most reliable in vitro assessment of antineoplastic activity for pancreatic adenocarcinoma cell lines and should continue to be the standard to which other assay systems are compared.

INTRODUCTION

The need for experimental evaluation of newer agents and modalities of therapy of pancreatic cancer is emphasized by its increasing incidence (9) and the inability of available treatment to offer meaningful extension of survival to most patients (5). Assays of cultured malignant cells and cell lines permit relatively efficient and economical screening for chemotherapeutic activity when compared to in vivo assay systems.

The present study represents an attempt to develop an in vitro assay for pancreatic adenocarcinoma cell lines that would provide more rapid screening than the CF assay permits. Roper and Drewinko (11) have carried out a systematic investigation of various methods evaluating drug-induced cellular damage and concluded that the CF assay provides "the most reliable, dose-dependent index of cell lethality." However, they did not compare CF to the MC assay, as developed by Komblith et al. (6, 7). The MC assay has the advantage of using a 24-hr culture of adherent cells in Terasaki plates with counting of individual cells, whereas the standard CF assay requires 5 to 14 days of culture in semisolid medium to allow the formation of identifiable colonies and considerably greater technician time for processing, incubating, and reading cultures.

Seven drugs were tested against 2 adherent pancreatic adenocarcinoma cell lines (one of human and one of hamster origin) by both MC and CF assays. We have reported previously that the drug sensitivities as demonstrated by in vivo testing and CF assay for 2 hamster pancreatic cancer models show a close correspondence (2). It was anticipated that the MC assay would be less sensitive than the CF assay, because only short-term cytotoxic effects would be detected by the MC assay. While a dose dependence could be demonstrated by the MC assay with most drugs, the degree of discordance between the 2 assay systems was considerable, especially when interdrug and inter-cell line comparisons are made, and correlation with CF was poor.

MATERIALS AND METHODS

Cell Lines. PANC-1 is a well-established and well-characterized human pancreatic carcinoma cell line derived from a poorly differentiated ductal origin by Lieber et al. (8). Our original samples of PANC-1 were obtained from the American Type Culture Collection and have been maintained in continuous culture in our laboratory for about 2 years. In vitro doubling time under conditions of routine passage is about 24 to 36 hr.

WD PaCa is a cell line adapted in our laboratory from a transplantable solid tumor model of a well-differentiated pancreatic ductal adenocarcinoma originally induced in imbed Syrian hamsters by the carcinogen, N-nitrobis(2-oxopropyl)amine. The solid tumor model was developed by Dr. Scarpelli and Dr. Rao, who kindly supplied samples of it to us and who have described it in detail elsewhere (12). In tissue culture, WD PaCa grows as an adherent monolayer with an approximate doubling time of 36 hr. WD PaCa has been grown by us for over 2 years in culture, where it retains mucin positivity and typical epithelial morphology with occasional signet ring cells.

Culture Conditions. Cell lines are maintained in Roswell Park Memorial Institute Tissue Culture Medium 1640, supplemented with 10% heat-inactivated fetal bovine serum, glutamine, penicillin (100 units/ml), and streptomycin (100 µg/ml) (Grand Island Biological Co., Grand Island, N. Y.). For both assays, the concentration of fetal bovine serum is raised to 15%; for the CF assay, a final concentration of 0.9% methylcellulose (FMC) is added.

Received August 23, 1982; accepted April 6, 1983.

1 Supported by Grant CA34170, awarded by the National Cancer Institute, Department of Health and Human Services. Presented in part at the Joint Meetings of the American Pancreatic Association and National Pancreatic Cancer Project, Chicago, November 1982.

2 To whom requests for reprints should be addressed, at Hematology/Oncology (111E), Veterans Administration Medical Center, Augusta, Ga. 30910.

The abbreviations used are: CF, colony formation; MC, microcytotoxicity; CCED, cell culture-equivalent dose.

Received August 23, 1982; accepted April 6, 1983.

3147
harvested in late-log or early-stationary phase growth by short exposure to 0.25% trypsin. Cells (1 to 2 \times 10^6) were incubated at 37°, 5% CO₂, for 1 hr with drug concentrations of 0, 0.01, 0.1, 1.0, 10, and 100 μg/ml. Drug dilutions were freshly prepared on the day of assay by dissolving the drug being tested (with the exception of menogarol) in Hanks' balanced salt solution to a concentration of 1.0 mg/ml, followed by filter sterilization, and serial dilution to concentrations of 200, 20, 2, 0.2, and 0.02 μg/ml. Mixtures (1:1) of drug solutions and cell suspensions were used to give the desired final drug concentrations. The initial solution of menogarol was prepared in 0.02 M lactic acid, with further dilution as described above. After incubation, cells were washed free of drug and resuspended in assay medium. CF assays were carried out in quadruplicate, using cell concentrations of 1 to 2 \times 10^6 cells/ml in methylcellulose medium in 35-mm culture dishes (Lux, Naperville, Ill.) with enumeration of colonies (>50 cells) using an inverted microscope after 5 to 10 days of incubation at 37°, 5% CO₂. MC assays were performed by plating 100 cells/well (16 replicates/drug concentration) in Terasaki microtiter plates (Falcon Plastics, Oxnard, Calif.) and incubating in a 37°, 5% CO₂, humidified atmosphere for 24 hr. MC scoring was accomplished by removing dead cells by washing, staining residual adherent cells with Giemsa stain, and counting (by inverted microscope) the number of cells per well. Results for each assay are expressed as the surviving fraction or T:C ratio (X treated:X control) for each drug concentration. Drug doses (μg/ml/1-hr exposure) at which there is a 50% inhibition of survival as compared to controls were determined from the log dose-survival curves. The following agents were tested and compared: cisplatin [cis-diaminedichloroplatinum(II)]; dactinomycin; doxorubicin; 5-fluorouracil; menogarol (7-O-methylnogarol, NSC 269148); mitoxantrone (dihydroxyanthracenedione, NSC 301739); and streptozocin (NSC 85998). (The last 3 named agents were obtained courtesy of the Natural Products Branch, Developmental Therapeutics Program, National Cancer Institute. The other agents were obtained commercially.)

RESULTS

The results of the dose-survival determinations for a number of standard and experimental agents are summarized in Table 1. The response curves of doxorubicin and mitoxantrone are shown in Charts 1 and 2. Using both the CF and MC assays, the dose-survival curves for cisplatin and 5-fluorouracil (not shown) are fairly flat until the dose of 100 μg/ml is reached; only then is 70 to 90% inhibition seen for these agents. Streptozocin does not inhibit either cell line at any dose level, and it can best be characterized as "ineffectual," as described by Drewinko et al. (4).

The concept of the CCED as developed by Wilkoff et al. (14) is used to deal with the problem of defining in vitro drug sensitivity. While a culture dose producing a 90% cell kill of less than or equal to the CCED, were it precisely known, would provide a more accurate prediction of antitumor activity in vivo, we have chosen a culture dose producing a 50% cell kill \leq the CCED as

<table>
<thead>
<tr>
<th>Drug</th>
<th>Cell line</th>
<th>ID₅₀ (CF)</th>
<th>ID₅₀ (MC)</th>
<th>ID₅₀ ratio (MC:CF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatin</td>
<td>PANC-1</td>
<td>13.0</td>
<td>62</td>
<td>4.8:1</td>
</tr>
<tr>
<td></td>
<td>WD PaCa</td>
<td>2.8</td>
<td>>100</td>
<td>>35:1</td>
</tr>
<tr>
<td>Dactinomycin</td>
<td>PANC-1</td>
<td>0.16</td>
<td>23</td>
<td>144:1</td>
</tr>
<tr>
<td></td>
<td>WD PaCa</td>
<td>1.1</td>
<td>7.6</td>
<td>6.9:1</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>PANC-1</td>
<td>0.025</td>
<td>11.0</td>
<td>440:1</td>
</tr>
<tr>
<td></td>
<td>WD PaCa</td>
<td>4.0</td>
<td>100</td>
<td>25:1</td>
</tr>
<tr>
<td>5-Fluorouracil</td>
<td>PANC-1</td>
<td>27</td>
<td>>100</td>
<td>>3.7:1</td>
</tr>
<tr>
<td></td>
<td>WD PaCa</td>
<td>12</td>
<td>>100</td>
<td>>8.3:1</td>
</tr>
<tr>
<td>Menogarol</td>
<td>PANC-1</td>
<td>0.7</td>
<td>5.0</td>
<td>7.2:1</td>
</tr>
<tr>
<td></td>
<td>WD PaCa</td>
<td>1.5</td>
<td>3.7</td>
<td>2.5:1</td>
</tr>
<tr>
<td>Mitoxantrone</td>
<td>PANC-1</td>
<td>0.013</td>
<td>>100</td>
<td>>7692:1</td>
</tr>
<tr>
<td></td>
<td>WD PaCa</td>
<td>0.93</td>
<td>>100</td>
<td>>107:1</td>
</tr>
</tbody>
</table>

*ID₅₀, drug dose (μg/ml/1-hr exposure) at which there is a 50% inhibition of survival as compared to controls.
the MC assay might have had some utility in drug testing with (13). Nevertheless, if there had been a constant predictable ratio only relevant end point for in vitro testing of antitumor agents cells. It has been argued that in fact clonogenic renewal is the genic cells, and MC measures short-term survival of adherent different mechanisms of action. The reason for the discrepancy quite variable both between cell lines, even when the same drug of activity shown in the MC as compared to the CF assay, then assessing; i.e., CF measures the reproductive capacity of clono-genic cells, and MC measures short-term survival of adherent drugs was studied, and between drugs, which is perhaps less surprising considering that the drugs studied here represent several different mechanisms of action. The reason for the discrepancy undoubtedly has to do with the different end points each assay assesses; i.e., CF measures the reproductive capacity of clonogenic cells, and MC measures short-term survival of adherent cells. It has been argued that in fact clonogenic renewal is the only relevant end point for in vitro testing of antitumor agents (13). Nevertheless, if there had been a constant predictable ratio of activity shown in the MC as compared to the CF assay, then the MC assay might have had some utility in drug testing with pancreatic adenocarcinoma cell lines. Longer incubations (e.g., 2 to 3 days) prior to enumeration of MC assays were not tested but might improve the sensitivity of the MC assay. However, due to our disappointing experience with the 24-hr MC assay, we are reluctant to undertake the detailed testing that would be required to explore further refinements of the MC assay. It should be noted that Kornblith and Szypko (7) have found the 24-hr MC assay to have predictive value for the clinical response (which is the ultimate test of any assay system) of human malignant gliomas to 1,3-bis(2-chloroethyl)-1-nitrosourea. However, it is quite possible that the usefulness of the MC assay is limited to certain drugs against certain types of tumors. Thus, the relative merits of the MC assay even with brain tumors may have to await ascertainment by comparison with CF assays and by testing with other cytotoxic agents.

On the basis of the present study, we feel that the CF assay still provides the most reliable assay system for pancreatic adenocarcinoma cell lines and probably for other cell lines as well. The CF assay should continue to be the standard to which other, especially short-term, assays should be compared.

ACKNOWLEDGMENTS

The author wishes to thank Robert Gutman (Medical Research Service, Veterans Administration Medical Center) for expert technical assistance.

REFERENCES

Table 2

<table>
<thead>
<tr>
<th>Drug</th>
<th>Estimated CCED (µg/ml)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatin</td>
<td>1.94</td>
<td>1</td>
</tr>
<tr>
<td>Dactinomycin</td>
<td>0.182</td>
<td>1</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>1.56–3.84</td>
<td>1</td>
</tr>
<tr>
<td>5-Fluorouracil</td>
<td>16.33</td>
<td></td>
</tr>
<tr>
<td>Menogarol</td>
<td>32.5</td>
<td>10</td>
</tr>
<tr>
<td>Mitoxantrone</td>
<td>52.0</td>
<td>*</td>
</tr>
</tbody>
</table>

* Estimated from data supplied by the Developmental Therapeutics Program, National Cancer Institute.
Comparison of in Vitro Methods for Assessing Cytotoxic Activity against Two Pancreatic Adenocarcinoma Cell Lines

Barbara K. Chang

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/43/7/3147

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.