Reduction of Estrogen Receptor Concentration in MCF-7 Human Breast Carcinoma Cells following Exposure to Chemotherapeutic Drugs

Kuo-Pao Yang and Naguib A. Samaan
Department of Internal Medicine, Section of Endocrinology, The University of Texas, M. D. Anderson Hospital and Tumor Institute at Houston, Houston, Texas 77030

ABSTRACT

To study the effects of commonly used chemotherapeutic drugs on estrogen receptor (ER) of human breast cancer, we investigated the specific binding of ³H]estradiol within intact MCF-7 human breast cancer cells after 1 to 4 hr of exposure to methotrexate (0.5 to 50 µg/ml), 5-fluorouracil, and vincristine in serum- and hormone-free medium. Intracellular ³H]estradiol binding was either slightly increased (methotrexate and 5-fluorouracil) or not changed (vincristine) during the first 2 hr of drug exposures at 37°, but slightly decreased at the third hr. After 4 hr of drug treatments, ³H]estradiol binding within MCF-7 cells was reduced by 30 to 70%; the response was dose dependent. Most (80 to 83%) of the intracellularly bound ³H]estradiol was found within the nuclei, and the drug-induced reduction of ER was reflected by a depleted nuclear uptake of ³H]estradiol. The Scatchard plot showed a large decrease of receptor number per cell with no apparent alteration in the binding affinity. The reduction of ER was reversible; regeneration of receptors to the control level occurred at either 4 hr (methotrexate and 5-fluorouracil) or 8 hr (vincristine) after removal of these drugs. The restoration was followed by an increase of ER beyond the control level. The dose-dependent depletion of ER by these cytotoxic drugs was also detectable in a second ER-positive cell line, MDA-MB-134. These data indicate that the cytotoxic drugs may cause a dose-dependent, reversible depletion of ER in human breast cancer, and the effect seems to be due to inhibition of receptor synthesis rather than inhibition of the binding of estradiol to its receptors.

INTRODUCTION

The significance of ER in predicting the response to hormonal therapy in patients with breast cancer has been generally agreed upon. In patients with advanced breast cancer, cytotoxic chemotherapy, alone or in combination with hormonal therapy, is often the choice for treatment. In hormonal therapy, antiestrogens, either tamoxifen or nafinoxide, induced an objective response rate of 30 to 40% in patients with advanced breast cancer (11, 17). Tamoxifen had been shown to depress DNA synthesis and incorporation of [¹⁴C]thymidine into protein in human breast cancer in vitro (13), and this effect could be overcome by simultaneous addition of estradiol. Since antiestrogens may act through mechanisms similar to some chemotherapeutic cytotoxic agents to arrest the metabolism of cancer cells, it may be important to understand how cytotoxic agents interact with hormone receptors, and how cytotoxic agents may affect estrogen receptor concentration in breast cancer. In this regard, clinical studies on the relationship between the presence of ER in breast cancer and response to cytotoxic chemotherapy have yielded controversial conclusions (1, 9, 10, 12, 20, 22). Variable biological characteristics among the patients and the difficulty in establishing a uniform match for the case control pairs may have mainly contributed to the ambiguity of clinical results. In this regard, study of the effect of cytotoxic drugs on ER in established cultured cell lines would perhaps overcome these problems. In the literature, very little of such information is available.

MCF-7 cells, an established human breast cancer cell line originally obtained from the pleural effusion of a patient with breast carcinoma (26), has been widely used as a model for ER-positive human breast cancer. In this report, we study the effect of cytotoxic drugs commonly used to treat breast cancer on the ER concentration of MCF-7 cells. To our knowledge, this is the first report on the effect of these cytotoxic drugs on the concentration of ER in breast cancer at the cellular level.

MATERIALS AND METHODS

Cell Cultures. MCF-7 cells, passages 140 to 170, were maintained as monolayer cultures in minimal essential medium supplemented with 10% calf serum, glutamine, insulin, and antibiotics. At confluence, cells were harvested with 0.1% trypsin in Ca²⁺- and Mg²⁺-free Hanks' balanced salt solution, were washed once, and were resuspended in regular growth medium supplemented with 10% calf serum. Three ml of cell suspension containing 5 x 10⁶ cells were added to sterile glass scintillation vials with foil liner caps and incubated at 37°. ER in the cells was measured after incubation for 72 hr. At that time, cells were attached to the bottom of the vials and were in the log phase of growth.

MDA-MB-134 and MDA-MB-231 cells (4), were grown in Leibovitz's L-15 medium supplemented with 10% calf serum, glutamine, insulin, and antibiotics.

Whole-Cell ER Assay. The specific binding of ³H]estradiol within the intact cells was determined by the method of Shafie and Brooks (25) with slight modification. MCF-7 cells were washed once with 1 ml of serum- and hormone-free minimal essential medium containing Hanks' MEM balanced salt solution. The cells in each vial were then added to 0.5 ml serum- and hormone-free Hanks' MEM containing 0.45 to 7.2 nM 17β-[2,4,6,7-³H]estradiol (107 Ci/mmol; Amersham/Searte Corp., Arlington Heights, Ill.). Nonspecific binding of ³H]estradiol was determined by parallel incubations with ³H]estradiol plus a 200-fold excess of DES (Calbiochem, San Diego, Calif.). After incubation at 37° for 60 min, the cells were washed twice with ice-cold 0.9% NaCl solution and extracted with 1 ml of ethanol at room temperature. The radioactivity in the extract was counted directly in 5 ml of scintillation fluid (ScintiVerse II; Fisher Scientific Co.). In this report, all results of ³H]estradiol binding were expressed as specific binding unless otherwise stated. Specific binding is the difference between the total binding in the absence of DES and the nonspecific binding in the presence of a 200-fold excess of DES. In

3534 CANCER RESEARCH VOL. 43

Downloaded from cancerres.aacrjournals.org on April 19, 2017. © 1983 American Association for Cancer Research.
experiments on the effects of the cytotoxic drugs on [\(^3\)H]estradiol binding, MTX, 5-FUra, or VCR were dissolved in or diluted with plain Hanks' MEM to obtain concentrations of 0.5 to 50 \(\mu\)g/ml, and the pH was adjusted to 7.4, if necessary. Representative cell counts for the control and drug-treated groups in each assay were determined by parallel incubation of separate sets of triplicate vials containing cells and incubation media. Cells were counted with an electronic particle counter (Model ZBI, Coulter Electronics, Inc.).

Nuclear Receptor Assay. MCF-7 cells were incubated with [\(^3\)H]estradiol and washed as described above. The cells were removed from vials with a rubber policeman into 1 ml of ice-cold 0.01 M Tris buffer containing TMM buffer. The cells were incubated at 4\(^\circ\)C for 15 min and then centrifuged at 100 \(\times\) g for 3 min. Cell pellets were resuspended in 1 ml of TMM buffer containing 0.5% Triton X-100 and incubated for 5 min at 4\(^\circ\)C. The nuclei were sedimented by centrifugation at 600 \(\times\) g for 3 min, washed once, and resuspended in TMM buffer. The nuclei obtained from this procedure appeared intact and were consistently free of cytoplasmic debris as observed by phase microscopy. An aliquot of the nuclear suspension was transferred into a counting vial. Radioactivity in the nuclear pellets was extracted with ethanol, and disintegrations were counted in the scintillation fluid described above. Another aliquot of the nuclear suspension was taken for DNA determination by the diphenylamine method (3).

Receptor Regeneration Study. MCF-7 cells were first incubated for 4 hr at 37\(^\circ\) in serum- and hormone-free Hanks' MEM with 0.5 ml (5 \(\mu\)g/ml) of each of the drugs. At the end of the incubation, the drugs were removed, and the cells were washed 3 times with Hanks' MEM to remove residual drugs. Three ml of Earle's minimum essential medium containing 10% bovine serum was added to the cells in each vial which was then incubated at 37\(^\circ\) under 5% CO\(_2\)/air atmosphere for various periods of time. At the times indicated, medium was removed and the cells washed once with Hanks' MEM. ER in the intact MCF-7 cells was then measured according to the method described above.

RESULTS

Measurement of ER in Intact Cells. [\(^3\)H]Estradiol was rapidly taken up by MCF-7 cells during the incubation at 37\(^\circ\) (Chart 1). Specific uptake of [\(^3\)H]estradiol reached its maximal level in 60 min. Therefore, 60 min was chosen for further experiments.

The specific uptake of [\(^3\)H]estradiol increased as the concentration of [\(^3\)H]estradiol in the medium increased, but it seemed to be saturated in concentrations exceeding 7.2 \(\times\) 10\(^{-9}\) M. Thus, 7.2 \(\times\) 10\(^{-9}\) M of [\(^3\)H]estradiol was used throughout these studies unless otherwise specified.

To determine whether our assay system would be able to quantify the ER content in different cell lines, an ER-positive and an ER-negative cell lines were examined next. The MDA-MB-134 is a human breast cancer cell line that was previously determined to be ER-positive, but its ER level is lower than that of the MCF-7 cells (30). The MDA-MB-231 is a human breast cancer cell line that was previously determined to be ER-negative and does not respond to estrogen with respect to thymidine incorporation (14). Chart 1 shows that the specific binding of [\(^3\)H]estradiol was readily detectable with MDA-MB-134 cells, and the ratio of specific binding between MCF-7 and MDA-MB-134 cells was comparable to that measured by the broken cells assays (30). On the other hand, no significant binding of [\(^3\)H]estradiol was detected within the MDA-MB-231 cells by the whole-cell assay (Chart 1).

Effects of Cytotoxic Drugs on the ER Level in MCF-7 Cells. To study the effects of the cytotoxic drugs on the specific binding of [\(^3\)H]estradiol within MCF-7 cells, the cells were incubated in 0.5 ml serum- and hormone-free medium with 2.5 \(\mu\)g of each drug for 0 to 5 hr at 37\(^\circ\). [\(^3\)H]estradiol was then added, and the incubation was continued for an additional hr. Chart 2 shows that, with all the drugs examined, no significant reduction of [\(^3\)H]estradiol-specific binding within MCF-7 cells was detected during the first 2 hr of exposure to the drugs. A slight decrease of [\(^3\)H]estradiol binding occurred at the third hr of drug exposure. After 4 hr of drug treatment, however, there was a 45, 40, and 63% reduction of specific [\(^3\)H]estradiol binding caused by MTX, 5-FUra, and VCR, respectively. No significant decrease of specific binding was detected between the fourth and sixth hr of drug exposure. However, further reduction of [\(^3\)H]estradiol binding beyond what was detected at 4 hr could be achieved by treatments of the cells with higher concentrations of the drugs. Chart 3 shows that MTX, 5-FUra, and VCR (50 \(\mu\)g/ml) reduced the specific binding further to 36, 47, and 21%, respectively, of the non-drug-treated control; the effect of these drugs appeared to be dose dependent. It should be noted that, in pilot experiments which were carried out to ascertain if there was a change on cell proliferation due to the exposure to each of the drugs, we found that there was no significant change of cell number in MCF-7 over the 1- to 4-hr incubation periods when cells were incubated in either the serum-free medium alone or the medium plus the drug. Thus, the reduction of specific [\(^3\)H]estradiol binding caused by these drugs was not resulted from alteration of cellular population density.

It is generally accepted that binding of estradiol to cytoplasmic receptors would be followed by the translocation of hormone-receptor complex to the nucleus (8, 21, 29). Also, MCF-7 cells have been found to contain unoccupied nuclear receptors (30). Therefore, binding activities in nuclei of the control and drug-treated MCF-7 cells were next compared. MCF-7 cells were equilibrated with [\(^3\)H]estradiol and [\(^3\)H]estradiol plus excess DES at 37\(^\circ\), the cells were washed, and the nuclei were then isolated to determine the radioactivity. Chart 4 shows that more than 80% of the specific [\(^3\)H]estradiol binding in the intact control MCF-7 cells were associated with the nuclei. About 90% of the nuclear [\(^3\)H]estradiol binding were specific. The radioactivities in
K-P. Yang and N. A. Samaan

100

O| 2 3 4 5 6

Drug Exposure Time (hr)

Chart 2. Effects of cytotoxic drugs on the specific binding of \([^{3}H]\)estradiol within intact MCF-7 cells as a function of time of treatment. Cells in the log phase of growth were either preincubated (time points 2 to 6 hr) with each drug (5 ng/ml) in serum- and hormone-free medium for 1 to 5 hr or without the preincubation. 7.2 nm \([^{3}H]\)estradiol and \([^{3}H]\)estradiol plus DES were then added, and the incubation was continued for an additional hr. MTX and VCR, 4 determinations in 2 experiments; 5-FUra (5-FU), 2 determinations in 1 experiment. Bars, S.E.

80

60

40

20

Control

MTX

5-FU

VCR

Specific \([^{3}H]\)Estradiol Binding (fmol/10^6 Cells), % Control

100

80

60

40

20

Control

MTX

5-FU

VCR

Specific \([^{3}H]\)Estradiol Binding (nmol/mg DNA), % Control

Chart 3. Dose-response relationships for the effects of cytotoxic drugs on the specific binding of \([^{3}H]\)estradiol within intact MCF-7 cells. Effects of cytotoxic drugs on \([^{3}H]\)estradiol binding were measured as described in the legend to Chart 2. Various concentrations of each drug were used. Effects of the drugs at only one time point (4 hr) were measured. Values are the means of 8 or more determinations in 4 experiments. 5-FUra (5-FU), 2 determinations in 1 experiment. Bars, S.E.

the nuclei of MTX-, 5-FUra-, and VCR-treated cells were only 58, 54, and 45%, respectively, of the non-drug-treated control.

To ascertain whether the reduction of \([^{3}H]\)estradiol binding in the drug-treated cells was due to the reduction of receptor sites or the decrease of binding affinity, MCF-7 cells were incubated with various concentrations of \([^{3}H]\)estradiol in the presence or absence of the drugs, and the results of the specific \([^{3}H]\)estradiol binding were used to construct the Scatchard plot (24), which is shown in Chart 5. The reduction of ER in MCF-7 cells caused by exposure to the cytotoxic drugs was due to the decreased number of receptor sites per cell; there was no significant change in affinity (see Chart 5 for values for \(K_d\) and the number of sites per cell). The \(K_d\) of estradiol binding, \(4.2 \times 10^{-8} M\), is higher than the values \((3.0 \sim 3.8 \times 10^{-8} M)\) obtained by others using cell-free systems (15, 30) but agrees reasonably with that \((1.5 \times 10^{-8} M)\) obtained from a similar whole-cell method (25). It may be that \(K_d\) is altered by intracellular factor and by the loss of the estradiol ligand due to conversion to its metabolites by the whole cell.
cells. Shafie and Brooks (25) found that about 15% of estradiol was converted to estrone during the incubation of intact MCF-7 cells with [3H]estradiol at 37°C.

Time Course of Regeneration of ER. To investigate whether the loss of ER from MCF-7 cells after drug treatment is reversible, MCF-7 cells were washed after 4 hr of exposure to the drugs and incubated at 37°C in fresh culture medium containing calf serum for periods of time as indicated, and ER in these cells was then measured. Chart 6 shows the time course of the regeneration of ER in drug-treated MCF-7 cells after incubation in drug-free medium. Immediately after the 4-hr drug treatment (i.e., Chart 6, Time 0), specific [3H]estradiol binding within MCF-7 cells, which was measured in drug-free medium, was either the same as or lower than that measured in the cells exposed to the drugs for 4 hr, but in which the [3H]estradiol binding was measured in the presence of these drugs (i.e., Chart 2, Time 4 hr). ER increased gradually during the incubation in drug-free medium and was restored to the non-drug-treated control level at either 4 hr (MTX- and 5-FUra-treated) or 8 hr (VCR-treated) after the incubation. The recoveries of ER concentrations to the control level were followed by "overshooting" increases of receptor concentrations above the control level.

Effects of Cytotoxic Drugs on the ER Concentration of Another ER-positive Human Breast Cancer Cell Line. To ascertain whether the reduction of ER in response to the treatments of these cytotoxic drugs is a unique property of MCF-7 cells, a second ER-positive human breast cancer cell line, MDA-MB-134, was also investigated for the drug effect on ER. Chart 7 shows that the cytotoxic drugs, which caused a reduction of the ER concentration in MCF-7 cells, also similarly reduced the ER concentration in the MDA-MB-134 cells.

DISCUSSION

Using intact cells to measure binding of steroids to specific receptors has been applied to studies of various types of cells (2, 19, 25, 27, 28). With MCF-7 cells, it has been shown that the specific uptake of [3H]estradiol by the whole cell was directly related to the ER concentration in the cells (25). Recently, using a whole-cell suspension assay technique, Macindoe et al. (16) demonstrated the specific binding of testosterone and dihydrotestosterone to androgen receptors within intact MCF-7 cells. In our study, the correlation between cellular [3H]estradiol binding capacity and ER concentration was indicated in the results from 2 experiments: (a) specific binding of [3H]estradiol was detectable only in ER-positive cells, the MCF-7 and MDA-MB-134 cell lines; but not in ER-negative cells, the MDA-MB-231 cell line. Furthermore, the ratio of [3H]estradiol binding capacities within the MCF-7 and MDA-MB-134 cells, measured by the whole-cell method in our study, was comparable to the ratio estimated from other cell-free systems (30); (b) most (>80%) of [3H]estradiol that specifically bound within MCF-7 cells was associated with the nuclei after a 30-min incubation of the whole cells at 37°C.

Our results clearly indicate that the cytotoxic drugs, MTX, 5-FUra, and VCR, reduced ER concentrations in 2 ER-positive human breast cancer cell lines examined thus far. The reduction of ER was not likely due to blocking the formation of [3H]estradiol-receptor complex by the drugs. This conclusion is indicated by 2 pieces of evidence: (a) The amounts of the specific [3H]estradiol binding within the drug-treated MCF-7 cells measured in drug-free medium (i.e., Chart 6, Time 0) were either the same as or lower than those measured in the presence of the drugs (i.e., Chart 2, Time 4 hr); (b) Scatchard analysis indicated a reduction of receptor sites per cell with no change in the apparent binding affinity. Our findings agree with the results of Muller et al. (18), who found that certain cytotoxic drugs, including MTX and VCR, did not affect the specific binding of [3H]estradiol to the cytosols extracted from human breast tumors. Di Carlo et al. (6), on the other hand, studied uterine cytoplasmic ER and concluded that Adriamycin and MTX decreased rat uterine ER by inhibiting both protein synthesis and formation of the [3H]estradiol-receptor complex. Since Muller et al. investigated the drug effect in a cell-free system, and Di Carlo et al. studied it in vivo, both of their methods are quite different from ours; thus, comparison of the results would be complicated. In our study, protein synthesis in the treated MCF-7 cells was inhibited 54, 45, and 64% by MTX, 5-FUra, and VCR (5 μg/ml), respectively, after 4-hr drug incubation. Thus, our results support the notion that the reduction of ER by the cytotoxic drugs is due...
to the direct action of these drugs on the de novo synthesis of ER but not to the inhibition of formation of estradiol-receptor complexes. However, whether these drugs affect the rate of receptor degradation in addition to the inhibition of receptor synthesis still remains to be studied.

The loss of ER in MCF-7 cells that was induced by the cytotoxic drugs appeared to be reversible when the cells were incubated in drug-free medium after drug treatments. The apparent recovery of ER to the control level occurred after 4 hr and was followed by an increase of ER above the control level. A similar "overshooting" phenomenon has been reported in studies of estrogen-induced replenishment of cytoplasmic ER (5, 6, 23). It is possible that these cytotoxic drugs act by a mechanism similar to estrogen in this respect. It should be noted that there was no significant reduction of number of MCF-7 cells immediately after the drug treatment and also during the 12-hr period shown in Chart 6. However, prolonged incubation of the drug-treated MCF-7 cells in drug-free culture medium containing 10% calf serum resulted in considerable cell death (e.g., 35 to 55% cell death occurred after a 21-day incubation as determined by the colony formation technique). It is possible that a subpopulation of the treated cells that did not survive treatment might not have restored their ER, but that this deficiency was overshadowed by the overshooting increase of ER in other subpopulations that survived the prolonged post-drug-treatment incubation. This speculation is supported by preliminary results showing that the cell-killing activities of these drugs at doses of 0.5 to 50 μg/ml, as determined by the colony formation technique, were proportional to the degree of ER reduction caused by the corresponding doses of each drug. Experiments are now in progress to determine the ER concentration in the cells that do not survive the prolonged incubation after drug treatment and to compare those concentrations with the ER concentration in cells that do survive.

We conclude that the cytotoxic drugs may cause a dose-dependent depletion of ER in human breast cancer, and the effect seems to be due to inhibition of receptor synthesis rather than inhibition of the binding of estradiol to its receptors.

ACKNOWLEDGMENTS

We would like to thank Dr. Charles McGrath for the MCF-7 cell line and Dr. Reilda Cailleau for the MDA-MB-134 and MDA-MB-231 cell lines.

REFERENCES

Reduction of Estrogen Receptor Concentration in MCF-7 Human Breast Carcinoma Cells following Exposure to Chemotherapeutic Drugs

Kuo-Pao Yang and Naguib A. Samaan

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/43/8/3534

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.