“It will be noted that by far the most potent substance is 4:4'-dihydroxy-α,α-diethylstilbene. This was fully active in ovariectomized rats in a dosage between 0.3 and 0.4 gamma. Comparative tests show it to be between two and three times as potent as oestrone under similar conditions... it is active when dissolved in oil or in aqueous alcohol, or in aqueous solution as the sodium salt. The acetate is also fully active.

If the formula of this compound, C₁₃H₁₉O₂, (I), be written as shown below, the structural resemblance to oestrone, C₃₅H₅₂O₂, (II), can be appreciated. It can be seen that it is a possible dimeride of estol."
SEVENTH ANNUAL
BRISTOL-MYERS AWARD FOR
DISTINGUISHED ACHIEVEMENT
IN CANCER RESEARCH

The Bristol-Myers Company presents an annual award to a scientist making an outstanding contribution in cancer research. The candidates for the award are to be nominated by medical schools, free-standing hospitals and cancer research centers. Only one nomination from each institution is permitted.

AWARD: $50,000 U.S.
DEADLINE FOR RECEIPT OF NOMINATIONS
December 1, 1983
ANNOUNCEMENT OF AWARD RECIPIENT
Spring 1984

SELECTION COMMITTEE
Albert H. Owens, Jr., M.D., Selection Committee Chairman
The Johns Hopkins University School of Medicine

Daniel E. Bergsagel, M.D., D.Phil.
Ontario Cancer Institute/Princess Margaret Hospital

Gianni Bonadonna, M.D.
Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan

Harris Busch, M.D., Ph.D.
Baylor College of Medicine

Emil Frei, III, M.D.
Harvard Medical School/Dana-Farber Cancer Center

Ken R. Harrap, Ph.D., D.Sc.
Institute of Cancer Research, Surrey

Salvador E. Luria, M.D.
Massachusetts Institute of Technology
Cancer Research Center

Paul A. Marks, M.D.
Memorial Sloan-Kettering Cancer Center

Henry C. Pitot, M.D., Ph.D.
McArdle Laboratory for Cancer Research

Saul A. Rosenberg, M.D.
Stanford University School of Medicine

Alan C. Sartorelli, Ph.D.
Yale University
School of Medicine

Philip S. Schein, M.D.
Georgetown University School of Medicine

John E. Ultmann, M.D.
The University of Chicago
School of Medicine

Rules and official nomination forms are available from: Secretary, Award Committee,
345 Park Avenue, Room 43-38, New York, New York 10154, or (212) 546-4339.
Edward Charles Dodds (1899–1973), British biochemist, Courtauld Professor of Biochemistry, University of London, and Director of the Courtauld Institute of Biochemistry at Middlesex Hospital, Fellow of the Royal Society and President of the Royal College of Physicians, knighted in 1964, was an honorary member of the American Association for Cancer Research.

Dodds discovered diethylstilbestrol, the synthetic estrogen, during 5 years of systematically progressive investigations. As G. F. Marrian describes it in a Symposium on Steroid Hormones (University of Wisconsin Press, 1950):

"This work started in a modest way in 1933 when Cook, Dodds, and Hewett (Nature, 131:56, 1933) observed 1-keto-1,2,3,4-tetrahydrophenanthrene to be weakly estrogenic. This observation encouraged Dodds to undertake a systematic search for estrogenic activity among readily available polycyclic carbon compounds. For a number of years this search yielded only a number of rather feebly estrogenic substances, none of which had activities at all comparable with those of the more potent natural estrogens. In 1938, however, Dodds and his co-workers, in collaboration with Robinson at Oxford (Nature, 141:247, 1938 and 142:34, 211, 1939), found in 4,4'-dihydroxy-α,β-diethylstilbene (diethylstilbestrol) an easily synthesized artificial estrogen of a potency which is as great as that of α-estradiol when administered parenterally and, unlike the latter, also highly potent by oral administration. This artificial estrogen and others of the same general type which were obtained later have proved to be of great value for clinical use."

The portrait of Dodds is by courtesy of the Courtauld Institute. Dodds holds the structure of diethylstilbestrol. The excerpt is from the article in Nature, 141: 247–248, February 5, 1938.

M. B. S.