In Vivo Dosimetry of 4-Aminobiphenyl in Rats via a Cysteine Adduct in Hemoglobin

Laura C. Green, Paul L. Skipper, Robert J. Turesky, Matthew S. Bryant, and Steven R. Tannenbaum

Massachusetts Institute of Technology, Department of Nutrition and Food Science, Cambridge, Massachusetts 02139

ABSTRACT

The feasibility of monitoring doses of 4-aminobiphenyl (ABP) via adduction to hemoglobin was investigated. Rats dosed with ABP (from 0.5 µg/kg to 5 mg/kg) formed a stable covalent hemoglobin:ABP adduct. Approximately 5% of a single dose was bound as hemoglobin:ABP; chronic dosing led to an accumulation of the adduct to a level 30 times greater than that found after a single dose. Facile in vitro hydrolysis of the adduct regenerated ABP, allowing detection at the sub-ng level. Human hemoglobin was also readily adducted, using N-hydroxy-ABP in vitro. The predominant site of adduction appeared to be the cysteine residue in hemoglobin. The use of such adducts as dosimeters for arylamine exposures in humans is discussed.

INTRODUCTION

In order to assess the risks to human health posed by carcinogens in the environment, one must estimate the actual doses of these compounds. In the case of a food-borne carcinogen, for example, one can estimate intakes by measuring levels in various foods. A more accurate measure of dose, however, might be provided by the measurement of the compound or one of its metabolites in exposed individuals. The levels in food only provide estimates of exposure, while the levels in vivo would serve as dosimeters, reflecting actual absorption and metabolism.

One type of dosimetry involves simply measuring amounts of a given compound in human tissues. Pesticides and polychlorinated biphenyls, for example, can be measured in blood or adipose tissue (4). Measurements such as these will be most useful when the compounds have long biological lifetimes, as is, of course, the case with the chlorinated pesticides.

More often, though, the compounds of interest will be rapidly eliminated and/or metabolized. In these cases, the compounds may not be detectable per se but may accumulate as covalent adducts to macromolecules, such as nucleic acids and proteins. Bunn et al. (9, 10) and others (6, 25, 38) have found that glucose, for example, adducts to hemoglobin, forming the glycosylated Hb A1c. Hb A1c levels accumulate over the 4-month lifetime of the protein, and clinical measurements of the adduct provide more reliable and more sensitive assessments of glucose status in diabetic individuals than do the simple measurements of free glucose in blood or urine (31).

The use of hemoglobin adducts as dosimeters for alkylating agents was first investigated by Ehrenberg et al. (14) for the mutagen ethylene oxide. These investigators showed that the adducts formed in mice in a dose-dependent fashion accumulated over the lifetime of the erythrocyte during chronic exposures and might be used as a dosimeter in people exposed to ethylene oxide in the workplace (11, 15, 34). Others have begun investigations on the adduction of hemoglobin by methylyating agents and by a variety of carcinogens (16, 32, 36).

This report presents our initial work aimed at developing a dosimeter for ABP. This compound is of considerable toxicological significance. It is recognized to be a human bladder carcinogen (20, 21) and is present at levels of a few ng per cigarette in mainstream smoke and greater than 100 ng per cigarette in sidestream smoke (35). The increased risk of cigarette smokers for bladder cancer (12, 28, 44) has been attributed to the presence of carcinogenic alylamines, such as ABP, in cigarette smoke (27). Furthermore, it appears that bladder cancer risk is, in part, dependent upon interspecies (22, 29) and interindividual (27) differences in metabolism of aromatic amines, specifically in the relative rates of N-hydroxylation and N-acetylation. Dosimetry reflective of the yield of relevant metabolites might therefore be especially useful. We report here that an unusually high percentage of administered ABP forms adducts to hemoglobin, suggesting that this method could be used to determine actual doses in cigarette smokers and other exposed individuals.

MATERIALS AND METHODS

In Vivo Experiments. Young adult male Fischer rats (Charles River Breeding Laboratories) with an average weight of 200 g were given i.p. injections of either ABP (Sigma) or [2,2'-3H]ABP (Midwest Research Institute; found to be >91% radiochemically pure by thin-layer chromatography and diluted to a specific activity of 30 mCi/mmol with unlabeled ABP) in dimethyl sulfoxide. Doses ranged from 0.5 µg/kg to 5 mg/kg. Two or 3 rats were dosed at each level. For single-dose studies, blood was obtained by cardiac puncture or via the abdominal aorta at 24 or 48 hr after dosing. For multiple-dose studies, blood was obtained by puncture of a tail vein. The blood was pooled and iced immediately and centrifuged to generate packed RBC. The RBC were washed 3 times in several volumes of cold phosphate-buffered saline and then lysed by the addition of 3 volumes of cold distilled water. Four volumes of 0.67 M phosphate, pH 6.5, were added to the lysate to effect complete solution of the hemoglobin (8, 39), and the hemolysate was centrifuged at 25,000 x g at 4° for 25 min to precipitate the cell membranes and any residual WBC. A small portion of the supernatant was reserved for Protosol (New England Nuclear) digestion, H2O2 bleaching, and liquid scintillation counting, while the bulk of the supernatant was dialyzed overnight at 4° against distilled deionized water. In most cases, the remainder of the work-up was as follows. After reserving a sample for LSC, the dialysate was added dropwise to 20 volumes of 1% HCI in acetone and then lyzed by the addition of 3 volumes of cold distilled water. Four volumes of 0.67 M phosphate, pH 6.5, were added to the lysate to effect complete solution of the hemoglobin (8, 39), and the hemolysate was centrifuged at 25,000 x g at 4° for 25 min to precipitate the cell membranes and any residual WBC. A small portion of the supernatant was reserved for Protosol (New England Nuclear) digestion, H2O2 bleaching, and liquid scintillation counting, while the bulk of the supernatant was dialyzed overnight at 4° against distilled deionized water. In most cases, the remainder of the work-up was as follows. After reserving a sample for LSC, the dialysate was added dropwise to 20 volumes of 1% HCI in acetone; this separates the heme, which remains in solution, from the globin, which precipitates (1). The acetone was evaporated from the acidic acetone solution under an N2 stream, and the reddish-brown residue was either analyzed by LSC or further purified on a C18 Sep-Pak (Waters Associates). Three fractions were collected from the Sep-Pak: material that eluted with (a) 10 mw KCI buffer, pH 2.5; (b) buffer:methanol (1:1); and...
c) methanol. The eluates were concentrated by rotary evaporation as needed and analyzed by LSC and/or HPLC, as below. The globin precipitate was washed once with cold acetic acid, twice with cold acetone, collected on filter paper in a Buchner funnel, and dried by aspiration, and a sample was analyzed by LSC.

When the samples were to be analyzed by GC, a different work-up was used. A complete description of the procedure will be presented elsewhere, but the essential features are the following. The hemolysate was spiked with 1.0 ng of 4'-fluoro-ABP to serve as internal standard and then made 0.1 M in NaOH. Base-catalyzed hydrolysis was found to be preferable to acid-catalyzed hydrolysis, since it yielded a much cleaner chromatogram. After incubation at 37° for 2 hr, the mixture was extracted twice with 0.5 volume of hexane. Pentfluoropropanionic anhydride (1 µl) was added to the hexane after it was dried over Na2SO4. After 10 min, the hexane solution was concentrated with a rotary evaporator to 0.2 to 0.5 ml for analysis by GC. The recovery of internal standard was typically about 40%. It should be emphasized that purity of solvents and reagents is critical to the success of this method and that only glass, stainless steel, and Teflon apparatus should be used.

In Vitro Experiments. Sperm whale myoglobin (Sigma Chemical) was prepared as metMb as follows: 1.2 mol of K2Fe(CN)6 was reacted with 1 mol of myoglobin in 50 mM sodium phosphate, pH 7.0, for 2 min. The solution was then passed through an Bio-Gel P-6DG size exclusion column, equilibrated previously in the same buffer, to separate the oxidant from the protein. O2Mb was prepared by adding a few crystals of sodium dithionite to a solution of Mb in 50 mM phosphate, pH 7.0, which had been flushed with N2; the mixture was then passed through the Bio-Gel column.

Hemoglobin was prepared from human blood obtained by venipuncture and collected in heparinized Vacutainers. Red cells were harvested and washed as above and then lysed with an equal volume of cold distilled water and 0.1 volume of toluene. The mixture was shaken vigorously for 1 min, allowed to sit on ice for 1 hr, and then centrifuged at 20,000 x g for 30 min. The Hb-containing supernatant was further purified by passing it through the Bio-Gel P-6DG column. Samples were analyzed by visible spectroscopy to confirm that all of the Hb existed as O2Hb. MetHb was prepared by oxidation with 1.2 mol of K2Fe(CN)6 per mol of hemoglobin, followed by purification through Bio-Gel P-6DG.

Concentrations of hemoglobin or myoglobin were determined by oxidation with K2Fe(CN)6, complexation with NaCN, and measurement of the absorbance at 540 nm (41). Reactions of N-[5,2'-3H]OH-ABP [synthesized by the method of Thisens et al. (40); specific activity, 4.1 mc/ml/mmol] with O2Mb, O2Hb, or metHb proceeded at room temperature for 1 hr and were monitored by visible spectroscopy. Cysteine residues available before and after the reaction were determined by titration with p-mercuribenzoate (5, 7).

In experiments designed to determine the nature of the protein adducts formed, N-[2,2'-3H]OH-ABP was allowed to react with solutions of myoglobin or hemoglobin in ratios of 1 mol of N-[2,2'-3H]OH-ABP to 2 mol of heme. Reaction mixtures were passed through Bio-Gel P-6DG, samples were analyzed by LSC, and the solutions of hemoprotein were treated with cold acetic acid and further purified as above.

In control experiments, '[H]ABP was added to a solution of O2Hb, in a ratio of 1 mol of ABP to 2 mol of heme. UV-visible spectra taken of samples of the mixture following a 1-hr incubation at room temperature revealed no detectable oxidation of O2Hb. The mixture was passed through Bio-Gel P-6DG as above; 99.8% of the applied tritium was removed by the column, i.e., only 0.2% of the tritium eluted with the fraction that contained the hemoglobin. This result suggests that chromatography on Bio-Gel is sufficient to dissociate unreacted, noncovalently bound ABP from hemoglobin.

Chromatographic Analysis. HPLC was performed on a C18Bonda pak column (Waters Associates), with a solvent flow rate of 1.5 ml/min and, generally, either of 2 sets of solvents and gradients: (a) an acidic buffer as the weak solvent (10 mm KCl, pH 2.5) and methanol as the strong solvent, with a linear gradient from 0% methanol to 80% methanol in 25 min; or (b) a neutral buffer of 10 mm K2HPO4/KH2PO4, pH 7, as the weak solvent and methanol as the strong solvent, with a linear gradient from 20% methanol to 80% methanol in 30 min. Detection was either by UV absorption at 254 nm (Model 440 Absorbance Detector, Waters Associates) or by fluorescence (Schoeffel FS970 fluorimeter). For fluorescence, excitation was at 247 nm under acidic conditions, excitation was at 280 nm under neutral conditions, and emission was through a 320-nm cutoff filter in both cases. For some analyses, HPLC effluent was monitored by a continuous scanning spectrophotometer (Model 8450, Hewlett-Packard). Radioactivity was monitored by collecting successive 1.5-ml aliquots of the HPLC effluent and analyzing by LSC.

GC was performed with a Hewlett-Packard 5890 chromatograph equipped with a capillary inlet and an electron-capture detector. The column was a 15-m x 0.25-mm ID fused silica capillary coated with Supelcowax 10 (film thickness, 0.25 µm). The carrier and make-up gases were hydrogen and 5% methane in argon, respectively (Matheson UHP grade). Injections were made in a splitless mode with the port temperature maintained at 300°. Initial oven temperature was 100° for 1 min, followed by 2 temperature programs (100–170° at 30°/min and 170–210° at 5°/min), followed by an isothermal phase.

RESULTS

Rats dosed with [3H]ABP accumulated a considerable fraction of the dose in their blood. Twenty-four hr after a single dose of 5 mg/kg, rats showed 8.0% of the administered radioactivity in the RBC compartment and less than 10% of this in the plasma compartment. After dialysis of the washed, lysed, membrane-free RBC, 7.3% of the dose remained. After treatment with acetic acid, only 0.13% of the dose precipitated with the globin, while 6.6% of the dose was recovered in the acetic aceton solution. When this solution was evaporated and further purified on a C18-Sep-pak, 5.6% of the dose eluted in the 50:50 buffer:methanol wash. Chromatography of this eluate revealed that the major labeled product was [3H]ABP itself, accounting for 5% of the original dose (Chart 1). Since both prolonged dialysis of the RBC lysate and treatment of the hemolysate with acetone alone, in the absence of acid, failed to liberate significant radioactivity, it appeared that a form of ABP had covalently bound to hemoglobin in vivo and that this adduct was acid hydrolyzed in vitro.

In vivo, the level of the acid-labile hemoglobin adduct formed was directly proportional to the dose of ABP, over the range of doses administered (Chart 2). These experiments, which were performed with radioactive ABP, may actually underestimate the amount of acid-labile adduct, as indicated by experiments in which this adduct was quantified by GC, a method which incorporates an internal standard to compensate for losses in sample handling. Four animals were treated with ABP at 0.5 µg/kg. GC quantification of the releasable ABP yielded an average value of 0.040 ± 0.017 (S.E.) nmol/g of hemoglobin, which corresponds to 13% of the dose bound to the total Hb compartment. These data are not included in Chart 2. The value of 13% needs to be adjusted downward to about 11%, however, because there is a background which appears in the absence of an administered dose. The source of this background is uncertain, but it has been observed in 13 of 13 animals examined thus far. In 8 cases, an accurate quantification was made, giving a mean value of 0.006 ± 0.002 nmol/g of hemoglobin. Control experiments demonstrated that the compound giving rise to the background is a basic compound, since it, as well as the internal standard, could be extracted out of the hexane extract with acid. Thus, it seems likely that the background is indeed ABP.
Elution Time, min

Chart 1. High-pressure liquid chromatograms of in vivo sample (A) and standard (B), with fluorescence detection. Standard is 7 ng of ABP in 0.05 N HCl. Sample is 0.5 ml of the 50:50 buffer-methanol wash of the preparation of dosed rat Wood (see text for details). Chromatography was under acidic conditions, as described in the text. The HPLC eluate was collected in 1-mm fractions for liquid scintillation counting. Greater than 90% of the applied radioactivity was found to have eluted between 21 and 23 min.

Chart 2. In vivo formation of the labile Hb:ABP adduct as a function of single i.p. doses of [3H]ABP. Adduct levels were measured by hydrolysis in vitro to free pHJABP.

Chronic administration of ABP (11.4 µg of [3H]ABP given once every 48 hr; specific activity, 0.18 µCi/µg) to a single rat led to an accumulation of radioactivity in the blood that was some 30 times greater than that found after a single dose (Chart 3). Upon cessation of dosing, the level of bound radioactivity decreased by 2.5% of its peak value per day. This suggested that the adduct was cleared somewhat more rapidly than unmodified hemoglobin, which is removed at a rate of 1.7% per day (37).

To investigate the chemistry of Hb:ABP adduct formation, we reacted N-OH-ABP with hemoglobin or myoglobin in vitro; the hydroxylamine was used since it is a major initial metabolite (29). As shown in Table 1, hemoglobin bound some 7 times more N-[2,2'-3H]OH-ABP than did myoglobin, on a per mol globin basis; of the radioactivity bound to hemoglobin, 85 to 90% was recovered as free [3H]ABP upon acid hydrolysis. The identity of the hydrolysis product was based on its cochromatography with authentic ABP and spectral characterization of the chromatographically purified product. The UV spectra under acidic (50% methanol, 50% 0.1 N HCl) and neutral (50% methanol, 50% 0.05 M ammonium formate) conditions and the mass spectrum (Chart 4) were identical to those displayed by authentic ABP.

The difference in adduct yields between hemoglobin and myoglobin suggested that cysteine might be an important site for binding, since sperm whale myoglobin has no cysteine residues (2). Titration of the reaction mixtures of N-OH-ABP and O2Hb or metHb with p-mercuribenzoate in fact revealed that the adduct formation of N-OH-ABP to hemoglobin involved the proportional loss of available sulfhydryl residues (Chart 5). Visible spectroscopy also showed that the reaction of the hydroxylamine with O2Hb or O2Mb involved oxidation to the met-form, as expected (23).

DISCUSSION

The in vivo association of aromatic amines with the RBC and with hemoglobin has been demonstrated by several investigators. As early as 1945, Miller et al. (30) found that rats dosed with 4-azobenzene produced RBC that liberated the compound upon treatment with base in alcohol. In 1960, Goldblatt et al. (17) reported that animals dosed with [3C]-labeled 2-
naphthylamine accumulated a fraction of the radioactivity that was "strongly attached" to one or more constituents of the contents (as opposed to the membrane) of the RBC. Lotlikar et al. (26) found that 2-nitrosofluorene but not N-hydroxy-2-aminofluorene reacted in vitro with glutathione to yield a water-insoluble product. Treatment of this 2-nitrosofluorene-glutathione derivative with acid, base, or liver homogenate regenerated the parent 2-aminofluorene. Weisburger et al. (42) reported that rats dosed with N-acetyl-2-aminofluorene or the N-hydroxy derivative localized a portion of the dose within the RBC in a tightly bound form, as judged by resistance to extraction by organic solvents; 24 hr after dosing, 1.5% of the administered N-OH-acetyl-2-aminofluorene was so bound. Gutmann et al. (19) found that liver proteins of rats given N-acetyl-2-aminofluorene were also adducted, apparently via reaction of the 2-nitroso-derivative. Dolle et al. (13), Groth and Neumann (18), Neumann et al. (33), and Wieland and Neumann (43) have shown that intermediates originating during methHb formation from trans-4-aminostilbene and related aromatic amines covalently bind to hemoglobin, that the hemoglobin-binding proclivities of the aromatic amines depend both on their metHb-forming activity and on other measures of their acute and chronic toxicities, and that the reaction of glutathione and protein cysteine residues with aromatic nitroso-derivatives include the formation of an acid-labile sulfanamide adduct. Finally, Kiese and Taeger (24) have shown that hemoglobin cysteine residues are adducted by phenylhydroxylamine in vitro. The overall mechanism, then, by which the Hb:ABP adducts may be formed in vivo and hydrolyzed in vitro is depicted in Chart 6. The arylamine is first oxidized to the arylhydroxylamine, predominantly by the action of cytochrome P-450 in the liver; the arylhydroxylamine then reacts with oxyhemoglobin in a cooxidation, yielding the nitrosoaromatic compound and methemoglobin (23). Nitrosobiphenyl would be expected to react with nucleophiles, and our results suggest that cysteine residues on Hb are the major site of aminobiphenyl addition. The reaction product of nitrosobiphenyl and the cysteine residue would be expected to rearrange to the sulfanamide, as shown. This adduct would be labile to acid or base hydrolysis in vitro, yielding the sulfonic acid and regenerating the original arylamine.

While we have yet to prove this sequence of reactions or the...
4-aminobiphenyl (4'-F-ABP) was 1.0 ng. The value corresponding to ABP in the unspiked sample represents 0.15 ng, as judged by the internal standard. Therefore, the multiplier to be used to calculate the steady-state level (34) is 3.33 ng/ml.

Chart 7 illustrates an experiment designed to demonstrate the adequacy of present technology to measure such levels. Blood was obtained from a volunteer nonsmoker. One sample (10 ml) was worked up as described for GC analysis. Another sample (also 10 ml) was spiked with hemoglobin obtained from a rat dosed with [3H]ABP and estimated to contain 0.3 ng of adducted ABP by LSC. It was then worked up exactly as the first sample. Estimation of the ABP content by comparison to the internal standard yielded a value of 0.4 ng after correction for the apparent background. The difference is probably not significant.

It is clear from this experiment that levels of ~0.05 ng/10 ml blood are detectable and should be accurately quantifiable with only slight improvements in chromatography.

Compared to the hemoglobin binding levels found for other carcinogens (36), the percentage of ABP bound as Hb:ABP is quite large. The high yield is probably due to the metabolic action of hemoglobin in converting the hydroxylamine to the reactive nitroso derivative. One would expect high yields of hemoglobin adducts for arylamines in general, as shown by some of the investigations cited above. Since some of these compounds, such as benzidine and 2-naphthylamine, are also human carcinogens (21), it would be of interest to develop the analogous dosimetry.

REFERENCES

19. Gutmann, H. R., Malejk-Giganti, D., Barry, E. J., and Ryder, R. E. On the correlation between the hepatocarcinogenicity of the carcinogen, N-2-fluorene-


OCTOBER 1984

4259
In Vivo Dosimetry of 4-Aminobiphenyl in Rats via a Cysteine Adduct in Hemoglobin

Laura C. Green, Paul L. Skipper, Robert J. Turesky, et al.


Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/44/10/4254

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.