Characterization of a Human, Sex Steroid-responsive Transitional Cell Carcinoma Maintained as a Tumor Line (R198) in Athymic Nude Mice

Lola M. Reid, Irwin Leav, Paul W. L. Kwan, Percy Russell, and Frederick B. Merk

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 [L. M. R.]; Departments of Pathology and Anatomy, Tufts University Schools of Medicine and Veterinary Medicine, Boston, Massachusetts 02111 [L. L., P. W. L. K., F. B. M.]; and Department of Biology, University of California-San Diego, La Jolla, California 92033 [P. R.]

ABSTRACT

We have established a transplantable tumor line, R198, derived from a papillary (transitional cell) carcinoma of the human urinary bladder. In nude mice, the tumor line exhibits properties attributable to both prostatic and transitional epithelia. In tumor-bearing animals given androgens, the neoplasm has a rapid growth rate, possesses low levels of measurable androgen receptors, produces tartrate-inhibitable acid phosphatase, and forms well-encapsulated, cystic tumors composed of transitional, glandular, and squamous cells. The administration of estrogens or transplantation of the tumor into female mice causes regression of the tumor. In a small percentage of the transplants placed into females or estrogenized animals, selection occurs for tumor cells which can grow under these conditions. The resulting tumors are infiltrating scirrhous carcinomas that closely resemble squamous cell carcinomas of the urinary bladder. These neoplasms grow slowly and do not possess androgen receptors or secretory material. They are composed of a homogeneous population of squamous cells which are locally invasive.

The paradox of a bladder tumor with some prostatic characteristics may be explained by the fact that the tumor was derived from the trigone region of the bladder, which embryologically is formed by an admixture of tissue from the urofetal duct and the urogenital sinus. Some trigone-derived neoplasms have characteristics of both bladder and prostate. We hypothesize that sex steroid-sensitive R198, with characteristics of both bladder transitional cells and prostatic epithelia, is a tumor which phenotypically expresses the embryological origins of these tissues. As such, the tumor line will serve as a useful model for studying sex steroid-responsive cells of the urogenital epithelium.

INTRODUCTION

Nude mice are unable to reject most allo- and xenografted tissue because their congenital athymia renders the animals immunologically deficient (11, 23, 27–29). Many types of human neoplasms have been routinely grafted into these mice which serve as hosts for serially transplantable tumor lines (11, 20, 21, 23, 25, 27, 29, 32). Sufrin et al. (37) have reported a success rate of approximately 40% when surgical specimens of human bladder tumors were transplanted into nude mice. These transplants maintained the same morphology as did the inoculated primary tumors. In the present study, we report the establishment of a transplantable tumor line, R198, derived from human bladder carcinoma cells. This tumor line has characteristics resembling those of neoplasms of both prostatic and urinary bladder epithelia. Extensive characterization of the tumor line indicates that it is derived from multipotential epithelia of the bladder.

MATERIALS AND METHODS

Origin of the Tumor

The neoplasm was obtained from an 81-year-old white male who had been admitted with symptoms of urinary tract obstruction. The patient had had diabetes mellitus for several years which was controlled by diet and daily injections (24 units/day) of insulin. The patient had previously undergone a transurethral prostatectomy in 1960. In 1975, he was admitted to the urological service with symptoms of urinary retention. Cystoscopy revealed a mass that was partially obstructing the prostatic urethra. A suprapubic prostatectomy was subsequently performed. During the operation, a papillary mass adjacent to the right ureter was found and removed along with the obstructing mass. A portion of the prostate mass and the entire papillary tumor were submitted for histopathological studies.

Histologically, the prostatic mass was characteristic of BPH, while the bladder lesion was diagnosed as a papillary (transitional cell) carcinoma, Stage A, Grade 1, according to the classification of Jewett (14). No evidence of a primary prostatic carcinoma was found in multiple sections of the hyperplastic tissue. Neoplastic epithelial cells, however, were found clinging to the surfaces of the resected BPH fragments. At this time, the origin of the cells was not apparent, but their cytological features and subsequent transplantation studies indicated that they were neoplastic urothelium.

The patient made an uneventful recovery. One year later, he again presented for obstruction of the bladder neck. Cystoscopy revealed numerous raised foci scattered throughout the mucosa of the bladder. A diagnosis of disseminated transitional cell carcinoma was made. The patient elected not to receive treatment and was lost to follow-up.

Mice

BALB/c nude mice were part of a breeding colony established initially in Dr. G. Sato’s laboratory (University of California, La Jolla) and thereafter in Dr. Reid’s laboratory (Albert Einstein College of Medicine). Homozygous nude males were bred to heterozygous females to yield offspring, approximately 50% of which were nude mice. All animals were maintained in isolation in rooms with HEPA-filtered air and in laminar-flow, HEPA-filtered units. The food, water, and bedding were sterilized. Four times a year, the colony was screened for viral and bacterial pathogens and for the general state of health of the animals.

Development of the Transplantable Tumor Line in Athymic Nude Mice

The surgical specimen of hyperplastic tissue containing adherent neoplastic transitional cells was transported to the laboratory in chilled phosphate-buffered saline; 5a-DHT, 5a-dihydrotestosterone; AK, adenylyl kinase; PAP, prostatic-specific acid phosphatase.
serum-free medium [Dulbecco's modified Eagle's medium: Ham's F-12 medium (1:1)]. In the laboratory, the sample was rinsed for 1 to 2 min in 70% ethanol to ensure sterility. It was then minced, a portion was fixed in buffered formalin, and the remainder was injected s.c. into 2 6-week-old male BALB/c nude mice. Each mouse received a 20-mg pellet of 5α-DHT (Calbiochem). The pellets were inserted s.c. on the contralateral side of the tumor implant. After 2 months, a neoplasm began to develop in one of the 2 mice. After another 2 months, the tumor was sufficiently large (more than 1 cm in diameter) to be transplanted. It was transplanted into 4 male nude mice, each pelleted with 20 mg of 5α-DHT. Tumors developed in all the mice. Thereafter, stock lines of the tumor were maintained by serial passage into male nude mice pelleted with 5α-DHT. To passage the tumor, a mouse carrying the tumor was killed, and the tumor was dissected out aseptically. The tumor was mechanically dissociated by pressing it through a collector (Belco Glass Co., Vineland, NJ) with a No. 2 coarse grid. The dissociated tumor tissue was centrifuged at 900 rpm, rinsed twice with PBS, and brought up in Dulbecco's modified Eagle's medium:Ham's F-12 medium (1:1) supplemented with 10% fetal bovine serum at a concentration of 0.5 ml of packed tumor mince per ml of medium. Tumor mince, 0.2 to 0.3 ml of mince plus medium, was injected s.c. into each male mouse. A tumor, 1 cm or more in diameter, generally developed in 6 to 8 weeks.

Karyotype Studies

Portions of the tumor from several mice were dissected under sterile conditions and prepared for primary cultures by procedures described below. After several days in culture, the cells were collected and treated with anti-mouse antiseraum by the procedures described by Reid and Rookind (31). Using this technique, the majority (greater than 99%) of the mouse cells were eliminated leaving only the human tumor cells. Karyotyping of the cultures was done by procedures described by Worton and Duff (39). The cultures were treated with Colcemid (0.04 μg/ml) overnight. The cells were harvested with 0.5% trypsin:0.2% EDTA and then exposed to a 0.075 M KCl hypotonic solution at 37°C for 35 min. They were fixed in several changes of acetic acid:methanol (1:3). Slides were made by air drying and then stained in a 4% Giemsa solution in 0.05 M Sorensen's buffer (pH 6.8) for 10 min. More than 30 cells were examined (Fig. 1).

Growth Curves

The tumor was evaluated for its ability to grow in the following groups of animals under various conditions (Charts 1 and 2): Group 1, untreated males or females or castrated males; Group 2, male treated with 20- mg pellets of either 5α-DHT or 17β-estradiol (made from powder from Calbiochem); Group 3, females treated with 20-mg pellets of 5α-DHT or 17β-estradiol.

The experiments were initiated by inoculating s.c. 0.2 ml of minced tumor into 4- to 5-week-old adult mice. Pellets containing the steroid were implanted s.c. in the side contralateral to the transplanted tumor. Once or twice each week, caliper measurements were made on any palpable neoplasms. Sections were double stained with uranyl acetate followed by lead citrate and examined in a Philips 300 electron microscope.

Histological Studies

At each passage, a portion of the tumor, along with samples of the liver, lungs, spleen, and lymph nodes, was fixed in buffered formalin; dehydrated with an ethanol series; and embedded into paraffin. Sections of 6 to 8 μm thick were stained with hematoxylin:eosin.

Ultrastructural Studies

Tumor specimens were fixed for 2 hr in 2% paraformaldehyde:2.5% glutaraldehyde in 0.1 M phosphate buffer and were subsequently post-fixed in 1% osmic acid:0.1 M phosphate buffer at 4°C, dehydrated with a graded series of ethanol solutions, and embedded in Epon 812. Thin sections were double stained with uranyl acetate followed by lead citrate and examined in a Philips 300 electron microscope.

AK Analysis

AK isozyme analysis was used to "fingerprint" tissues, whether normal or neoplastic, since the isoenzyme patterns are considered to be organ specific (33). Tissue was homogenized and the AK isoenzymes assessed at different pHs by isoelectrofocusing techniques. For these studies, the profiles were made on: (a) normal human bladder and normal prostate, both derived at autopsy (samples of the 2 tissue types were obtained from 35- to 50-year-old men); (b) surgical specimen of an oat cell carcinoma; (c) a surgical specimen of an ovarian cystadenocarcinoma; (d) surgical specimen of a colon carcinoma; (e) a human prostatic carcinoma cell line, PCS3, derived from a bone metastasis (16); (f) a surgical specimen from a primary tumor of prostatic carcinoma and; (g) a surgical specimen of a prostatic carcinoma metastatic to the liver (same patient as the one from which the primary tumor was derived). These profiles were then compared to those growing in untreated animals.
PC3, a human prostatic carcinoma cell line, was obtained from Dr. Edward Kaighn (NIH, Bethesda, MD). The cell line was established from a bone-metastatic lesion of prostatic carcinoma and has been characterized elsewhere (16, 36).

Primary Cultures. Primary cultures were prepared by mincing freshly dissected tumor and plating it onto 60-mm Falcon tissue culture dishes. In later studies, it was realized that the cells plated better on Falcon Primaria culture dishes (60 mm). The cells were cultured in RPMI 1640 supplemented with 10% fetal calf serum and 20% conditioned medium from GH3 cells. Epithelial cells grew out of the mince and became confluent on the plates within several days.

RESULTS

Development of the Tumor Line

In the initial passage, the tumor grew in only one of the 2 androgen-treated mice inoculated with minced tissue. This growth occurred 6 months after the initial transplant. The tumor grew slowly and was passed at 3 to 4 months. This neoplasm was designated R198. Subsequently, its passage time (the time required for 0.2 ml of mince to form a neoplasm greater than 2 cm in diameter) was reduced to approximately 2 months. The tumor retained its morphological and functional characteristics and was maintained as a stock line in male BALB/c nude mice pelleted with 20-mg pellets of 5α-DHT for more than 6 years. A summary of its development along with morphological descriptions are presented in Table 1.

Karyotype Studies (Proof of Species of Tumor Cells)

In the more than 30 cells examined, the n number was highly variable, ranging from 64 to 90. Three cells were examined in detail following G-banding with trypsin. Almost all chromosomes appeared to be unaltered and could be assigned to specific human homologues. A number of marker chromosomes were also present. They consisted of from 3 to 6 large acrocentrics. One marker chromosome consisted of 2 large intensely staining bands, a dark band, and a terminal pale band. Additionally, a medium-sized ring chromosome was observed in some metaphases. Fig. 1 is a representative karyotype from the tumor cells.

Influence of Sex Hormones on the Growth of and on the Morphology of R198 Tumors

The ability of R198 to grow and the resultant morphological and functional features of the tumor differed greatly, depending upon whether the tumor was carried in untreated, castrated, or sex steroid-treated nude mice. In the first 2 passages, the neoplasm failed to grow in intact males not treated with androgens. During subsequent passages, tumor size was dependent on endogenous testosterone or on 5α-DHT treatment of male mice. In later passages, some tumor transplants were able to grow in untreated males, in castrates, and in females. The results of these hormonal influences on tumor growth rate are presented in Charts 1 and 2 and in Table 1.

Untreated Male Mice. In passage 5, the tumor survived transplantation into untreated male mice but grew slowly (Chart 1A). Two months after inoculation, the tumors were 0.5 to 1.0 cm in diameter and firm. When cut, small cysts containing a milky fluid were found. Microscopically, the epithelial cells, which
formed the walls of the cysts, were surrounded by thin bands of stroma. The cysts were sharply delineated, and no evidence of stromal invasion was present (Fig. 2). Frequently, numerous papillary projections extended into the central cavity. Some of the projections contained fluid-filled spaces giving these structures an acinar appearance (Figs. 2 and 3).

At passage 14, R198 grew rapidly in untreated male mice (Chart 2A). The morphology of the tumor was similar to that observed in passage 5 in untreated male mice.

Androgen-treated Male Mice. Tumors in passage 5 (Chart 1A) and in passage 14 (data not shown) grew faster and attained a greater size in 2 months following 5α-DHT inoculation than was the case for those carried in untreated mice (Charts 1A and 2A). Tumors measuring 2 to 3 cm in diameter were usually found at this time. The tumors were soft and well encapsulated. Numerous cysts were present which contained a milky to bluish fluid. Histologically and cytologically, these neoplasms were identical to those from untreated mice except that the cysts were more numerous and had larger lumens. Neoplastic cells were compactly arranged, piled one upon another, progressing from a basal layer to a dilated lumen. Nuclear pleomorphism was frequently observed. The cytoplasm of these cells were finely vacuolated and were lightly stained with eosin (Fig. 4). Mitotic figures were frequently encountered in tumors of the 5α-DHT-treated animals.

Castrated Untreated Male Mice. In all the animals, the tumors regressed and were not palpable for varying periods of time (Table 1). In approximately 50% of the mice, neoplasms began to appear from 7 to 8 weeks and generally grew at rates faster than those in the intact males or males treated with of 5α-DHT (Chart 1C). In those mice in which the tumors had survived the selection process, the masses at 3 to 4 months were usually less than 1 cm in diameter and were firm. Grossly, the tumors were soft and rarely contained cysts. In these neoplasms, cells were piled one upon another, similar to those in androgen-treated and untreated male mice. However, degenerative changes such as cytoplasmic vacuolation and nuclear pyknosis were observed in some cells (Fig. 5).

Untreated Intact Females and Females Treated with Estrogen. As was observed for castrated males, R198 in females underwent a selection process (Table 1; Chart 1D). Fewer transplants, however, survived the selection process in females and even fewer survived in females treated with estrogen. At the fifth passage, in 6 of 8 transplants into untreated females, the tumors regressed and were not palpable for periods of up to 6 months. At autopsy, no residue of the tumor was found. In 2 of 8 transplants in untreated females, neoplasms began to reappear after 5 to 7 weeks in the mice and grew at a rate comparable to that of the tumors in males (Chart 1D). By the 14th passage, R198 continued to show very poor survival when transplanted into untreated female nude mice (0 of 5 mice with tumors). However, at the 14th passage, the tumor grew in 2 of 6 female mice.
mice treated with 17β-estradiol (Chart 2B). The lag time was approximately 40 days, and the growth rate was equivalent to that observed for the tumor line in male mice. In these cases, the neoplasms were scirrhous, were poorly encapsulated, and were dissected with difficulty. Histologically, the neoplasms were arranged in cords or aggregated into nests, separated by dense bands of fibrous connective tissue (Fig. 6). No central cavity or fluid was observed in these tumors. The pattern closely resembled that observed in infiltrating squamous cell carcinomas which provoke a pronounced desmoplastic response. Nuclear pleomorphism was commonly observed. The cytoplasts of neoplastic cells were usually deeply eosinophilic and often appeared hyalinized. In some instances, cells within nests appeared to have undergone squamous metaplasia.

Estrogen-treated Male Mice. In the experiments detailed in Table 1, only 6% of the transplants into estrogrenized mice grew. Similar to those tumors transplanted into females with and without estrogen treatment, they grew after a long (several months) selection process. They had a morphology similar to that of tumors grown in intact females (compare Fig. 6 with Fig. 7).

Androgen-treated Intact Females. The tumors grew at a rate and pattern similar to those in untreated males (Chart 1B). Histologically, the tumors were identical to those seen in untreated males.

Ultrastructural Studies of R198 in an Androgen Environment

The cells from tumors grown in male mice treated with 20-mg pellets of 5α-DHT had a variable appearance. Cells closest to the lumens occasionally had a glandular morphology (Fig. 8). In many regions of the tumor, transitional cells predominated (Fig. 9). In addition to the glandular and transitional cells, a less numerous population of cells were found that exhibited characteristic squamous differentiation (Fig. 11). All 3 cell types contributed to the walls of the acini. Glandular and transitional cells had short microvilli which projected into the acinar lumens. These cells were joined together at their apical margins by junctional complexes (9). The glandular cells were characterized by considerable amounts of rough endoplasmic reticulum, Golgi membranes, lipid droplets, and various types of lysosomes including multivesicular bodies (Fig. 8). The transitional cells were piled atop one another. Their cytoplasmic organelles were usually sparse and appeared to be uniformly distributed around the nucleus (Fig. 9). In some instances, the perinuclear band of organelles, which included multivesicular bodies, appeared well developed (Fig. 10). Contours of nuclei, found in cells featuring squamous differentiation, were more angular than those of the other 2 cell types, and the heterochromatin appeared more condensed adjacent to the nuclear envelope.

Ultrastructural Studies of R198 in an Estrogen Environment

Tumors grown in female mice treated with estrogen were primarily composed of a morphologically homogeneous population of cells. The nuclei were extraordinarily furrowed, and many contained unusual aggregates of nuclear material (Fig. 12). Large multiple nuclei were common. The cytoplasts of these cells had a squamous appearance characterized by numerous bundles of tonofilaments. Desmosomes were frequently found joining adjacent neoplastic cells (Fig. 12). Although intracellular lumens (1) were observed in tumors from androgen-treated mice, they were much more prevalent in the tumors carried in estrogenized females (Fig. 13). Fibroblasts near the tumor-stromal interface appeared to be very active (desmoplastic response) and were usually separated from the tumor by broad bands of collagen fibers (Fig. 14).

AK Isoenzyme Profiles

Isoelectrofocusing techniques have shown (33) that the AK isozymes have activity profiles which are organ specific. By assaying the AK activity along a continuous pH gradient, one can obtain a profile which can be useful in identifying tissue type. In preliminary studies, the AK isoenzyme profile was found to be similar for all urogenital tissues studied. Thus, the AK isozyme profile was used to ascertain whether or not R198 was of urogenital origin. As shown in Chart 3, the AK isoenzyme profiles of normal human bladder and prostate were found to be indistinguishable. Different tumor types have different AK activity profiles which correlate with those found for the normal tissues. In Chart 4 are shown 6 AK isoenzyme profiles of various neoplastic human tissues and an established, poorly differentiated prostatic carcinoma cell line, PC3 (16, 38). For all the normal and neoplastic prostatic tissue profiles studied, AK activity peaks were observed near pH 4.9, 7.6, 8.0, and 9.5. As shown, the AK activity peaks near pH 4.9 and 9.5 are characteristic for normal human urogenital tissue and at an activity ratio of 1/3. However, an unusual aspect of R198 was the finding that its AK activity varied depending upon whether the tumor was grown in males or females (Chart 5). The AK isozyme activities from R198 grown in female mice, when compared with activity profiles of R198 in a male, showed a small but reproducible peak at pH 2.3, a shift of the peak with a marked increase in magnitude to pH 4.3, and loss of some of the activity peaks between pH 7.0 and pH 9.0 (Chart 5). The AK activity profiles of R198 grown in males showed a pattern which was more similar to that shown in Chart 4 for the prostatic tumors except for the diminution of the peak near pH 9.5. Thus, the tumor when passaged in males has a profile similar to those for urogenital tissues. In females, the tumor shows a marked redistribution of isoenzyme activity and apparent change of isoelectric point values indicating a responsiveness to hormonal environment.

PAP Levels

The PAP levels were found to be significant in R198 tumors and, more importantly, were found to be influenced by sex steroids (Table 2). The influence of sex steroids on PAP was most dramatically seen in the levels in the fluid present in the tumors. The amount of fluid and its PAP content varied and correlated with the amount of androgens, the highest amounts of fluid and PAP levels being found in males treated with androgens and no fluid being found in castrated males or females. The levels were approximately equal in homogenates of the tumors grown in males, castrated males, and males treated with 5α-DHT. However, there was no detectable PAP in homogenates of tumor grown in females.

Androgen Receptor Assays of R198 Tumors (Table 2)

Very low levels of cytosolic androgen receptors were found in R198 tumors in their 11th passage in male mice with and without treatment with 5α-DHT. No detectable levels of androgen recep-
Sex Steroid-responsive Transitional Cell Tumor Line

Charts 3 to 5. AK isoenzyme profiles. It has been shown previously (33) that AK isoenzymes have profiles by isoelectrofocusing techniques which are organ specific. By assaying the AK isoenzyme activity along a continuous pH gradient, one can obtain a profile which is useful in the identification of tissue type. The normal or tumor tissue was extracted and electrofocused for about 60 hr at 4° in 1% Ampholine (pH 3 to 10). Each profile represents a minimum of 3 separate samples in duplicate. Total enzyme activity recoveries were greater than 80%.

Chart 3 (top). AK isoenzyme activity profiles were similar for normal human prostate and bladder, showing activity peaks at pH 6 and 9 for prostate and pH 5 and 9 for bladder.

Chart 4 (bottom left). AK isoenzyme profiles of a lung tumor (an oat cell carcinoma), an ovarian cystadenocarcinoma, a colon carcinoma, a primary prostatic carcinoma, a metastatic lesion of a prostatic carcinoma (to the liver), and a prostatic carcinoma cell line, PC3. The profiles for tumors are often similar to those for the normal tissue but may have additional peaks. For the prostatic tumor tissue profiles studied, AK activity peaks were observed near pH 4.9, 7.6, 8.0, and 9.5. As shown, the AK activity peaks near pH 4.9 and 9.5 are characteristic for normal human bladder and prostate.

Chart 5 (bottom right). AK activity in R198 tumors varied depending upon whether the tumor was grown in males or females. In female mice, the profiles showed a small but reproducible peak at pH 2.3, a large peak at 4.3, and small peaks between pH 7.0 and 9.0. In male mice, R198 tumors showed a profile similar to that observed for prostatic carcinomas.

OCTOBER 1984 4565
Tumors in their 11th passage were dissected from the mice,snap-frozen in liquid nitrogen, and stored at ~70°C until assayed. At the time of the assay, the tumors were thawed and homogenized in 10 ml of PBS. The homogenate was then centrifuged at 1500 rpm for 10 min. The supernatants were assayed for PAP receptor levels by the method of Wright et al. (40).

Table 2

<table>
<thead>
<tr>
<th>Sex of mouse</th>
<th>Treatment</th>
<th>PAP (IU/g protein)</th>
<th>Androgen receptor levels (fmol/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>None</td>
<td>1.80 ± 0.61</td>
<td>0.46 ± 0.20</td>
</tr>
<tr>
<td>Males</td>
<td>Castrated</td>
<td>2.05 ± 0.20</td>
<td>No fluid</td>
</tr>
<tr>
<td>Males</td>
<td>5α-DHT</td>
<td>2.75 ± 0.37</td>
<td>1.51 ± 0.97</td>
</tr>
<tr>
<td>Females</td>
<td>None</td>
<td>ND</td>
<td>No fluid</td>
</tr>
<tr>
<td>Females</td>
<td>Castrated</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

* Mice were either untreated, castrated as described in "Materials and Methods," or treated with sex steroids by placing a 20-mg pellet of the designated steroid s.c. in the mouse at the time of inoculation with tumor mince.

DISCUSSION

Tumors with histological and cytological features of urothelium grew in nude mice following the transplantation of a human BPH specimen that included adherent bladder carcinoma cells. The human derivation of the tumor line is confirmed by our karyotyping which includes G-banding studies. The karyotype of the tumor indicates aneuploidy, a 2n chromosome number of 64 to 90, and a number of distinctive marker chromosomes. Although the precise anatomical origin of the neoplastic urothelial cells is uncertain, it is likely that they were shed from the papillary carcinoma of the bladder that was removed along with fragments of hyperplastic prostate. Alternatively, the cells could have originated from an undetected neoplasms in the excretory ducts of the prostate gland or in the urothelium of the prostatic urethra. While uncommon, transitional cell carcinomas from these regions are histologically similar to those arising from other urothelial sites (15). Sherwood and Shade et al. (34) have reported the presence of preneoplastic and neoplastic lesions in extravascular portions of the urinary tract in a large percentage of patients undergoing cystectomy for primary carcinoma of the bladder.

The conclusion that R198 arose from bladder urothelium is derived from several lines of evidence. The histopathology of R198 was found to be similar to that of the papillary carcinoma, removed from the patient. As discussed in more detail below, the histopathology and ultrastructural studies of R198 indicate characteristics typical of bladder epithelia. An indirect line of evidence suggesting a vesicular origin for the tumor was that the cells grew in nude mice. Although human bladder tumors have been successfully xenografted into nude mice (20, 21, 37), differentiated human prostatic carcinomas have almost never been successfully xenografted unless the mice are immunosuppressed (29, 30). It has become clear in recent years that nude mice have various immunological and host defense mechanisms which can effect the rejection of certain allogeneic and xenogeneic transplants (13, 28). With respect to prostatic tumors, the host defense mechanisms include one(s) regulated by interferon which can be optimally blocked with antiserum to mouse interferon (29). R198 grew in athymic nude mice without immunosuppression, providing circumstantial evidence that R198 is derived from bladder rather than prostate.

To the best of our knowledge, this is the first report of a transplantable, sex hormone-responsive bladder carcinoma tumor line. Perhaps the most intriguing aspect of R198 is the apparent ability of sex steroids to modulate histological, cytological, and biochemical features of the tumor. For example, in the presence of androgens, R198 exhibited sustained growth which was characterized by the formation of cysts and acini in well-encapsulated tumors. The fluid-filled cysts were not present in androgen-deprived tumors. Therefore, these structures must represent a specific phenotypic expression influenced by the male sex hormone. On the other hand, when the R198 tumor line was implanted into female hosts, equally unique morphological changes, attributable to estrogen, occurred. The female hormone appeared to be responsible for the disappearance of transitional and glandular cells and for the emergence of a homogeneous population of neoplastic squamous cells. As the tumor evolved into a squamous cell carcinoma, it was characterized by local invasion of the surrounding stroma which was accompanied by a severe desmoplastic reaction. Thus, it appears that estrogen is antagonistic to the glandular and transitional cell components of the tumor and selectively promotes the proliferation of a specific cell type that exhibits a propensity to invade stroma.

The unique sensitivity of this tumor to sex steroids is reflected not only by the modifications in its growth rate but also by alterations in its morphology and certain biochemical characteristics. The fastest growth rates were observed in male mice pelleted with androgens or in tumors grown in females. Intermediate growth rates were observed in untreated males and castrated males. In most females and in about 50% of the castrated males, the tumor completely regressed and was not detectable at autopsy after 6 months. The presence of cytosolic androgen receptors [also reported by Shane et al. (35) in some human prostatic neoplasms] and the nature of the AK isoenzyme activity profile were found to be dependent upon whether the tumor was grown in an androgen or an estrogen environment. The mechanisms by which sex steroids influence these parameters are presently unclear.

The transitional, glandular, and squamous cells, which we identified in R198, have been found by other investigators to coexist in spontaneous carcinomas of the human urinary bladder (2, 3). Although some characteristics of R198 were similar to those of bladder carcinomas, we found that this tumor also had features found in prostatic carcinomas. While the majority of tumor cells resembled transitional epithelia, some of the glandular as well as the transitional cells had cytological features reminiscent of those described ultrastructurally in human prostatic carcinomas (17). Intracytoplasmic lumens, present in R198, have been reported to occur in prostatic carcinomas (17). Lipid droplets and secretory vacuoles are commonly observed in neoplastic prostatic cells, especially in Grade III and Grade IV tumors (17). Histochemically, acid phosphatase has been demonstrated in secondary lysosomes and secretory vacuoles of normal and neoplastic human prostatic epithelium (5, 12). The multivesicular bodies have acid phosphatase storage in the androgen-stimulated tumors. The synthesis of this enzyme
by prosthetic epithelia has long been considered to be an androgen-mediated function (4). When tumor-bearing male mice were treated with androgen, R198 produced large amounts of tartrate-inhibitable acid phosphatase. This isoenzyme is considered to be of prostatic origin and has been used clinically as a means for distinguishing the source of elevated enzyme levels in the circulation of patients suspected of harboring prostatic carcinoma (10).

The paradox of a bladder tumor with some prostatic characteristics can be better understood when examined in the light of studies by Cunha et al. (6, 7). Bladder-prostate epithelial cell differentiation is interchangeable depending on stromal influences (6, 7). Embryological studies have shown that the trigone and the prostate are derived from the pelvic part of the urogenital sinus which in turn receives cellular constituents from both the Wolffian and müllerian ducts (24). Thus, it is significant that the trigone of the human bladder is frequently the site of Brunns’ nests and adenocarcinomas (19). Pund et al. (24) have noted that some adenocarcinomas arising from the trigone have histological features reminiscent of both transitional and prostate neoplasms. Male hormones may influence the development of bladder tumors since these transitional cell carcinomas occur more frequently in human males than in females (26). Furthermore, experimentally induced bladder tumors occur more frequently in male (8) or androgen-treated (18, 22) rats than in females.

In conclusion, we have established a tumor line that possesses qualities of transitional cell carcinoma of the bladder and prostatic carcinoma. Because the morphology, growth rate, and biochemical features of this tumor line respond significantly to the endocrine status of the host, it will serve as a useful model for characterizing sex steroid-sensitive urothelial neoplasms.

ACKNOWLEDGMENTS

We would like to thank Roscoe Stanyon for the karyotype analysis of R198 cells and Dr. Boyce Bennett for assistance in obtaining photomicrographs of the histological slides. Acknowledgment also goes to Dr. Arthur Karmen (Einstein Hospital Clinical Chemistry Laboratory) for help with the assays on acid phosphatase. Bonnie Wolf, Susan Mackensen, Steven Halpern, Cliff Liverpool, Zenobio Murray, and Dorothy Occhino provided excellent technical assistance; and Rosina Pasella provided secretarial assistance.

REFERENCES

17. Kwan, P. W. L., Coon, J. S., IV, and Miller, A. W. Primary adenocarcinomas of prostatic origin-mediated function (4). When tumor-bearing male mice were treated with androgen, R198 produced large amounts of tartrate-inhibitable acid phosphatase. This isoenzyme is considered to be of prostatic origin and has been used clinically as a means for distinguishing the source of elevated enzyme levels in the circulation of patients suspected of harboring prostatic carcinoma (10).

In conclusion, we have established a tumor line that possesses qualities of transitional cell carcinoma of the bladder and prostatic carcinoma. Because the morphology, growth rate, and biochemical features of this tumor line respond significantly to the endocrine status of the host, it will serve as a useful model for characterizing sex steroid-sensitive urothelial neoplasms.

ACKNOWLEDGMENTS

We would like to thank Roscoe Stanyon for the karyotype analysis of R198 cells and Dr. Boyce Bennett for assistance in obtaining photomicrographs of the histological slides. Acknowledgment also goes to Dr. Arthur Karmen (Einstein Hospital Clinical Chemistry Laboratory) for help with the assays on acid phosphatase. Bonnie Wolf, Susan Mackensen, Steven Halpern, Cliff Liverpool, Zenobio Murray, and Dorothy Occhino provided excellent technical assistance; and Rosina Pasella provided secretarial assistance.

REFERENCES

2. Aroyo, J., Ignoffo, R., and Weintraub, R. S. Sex Steroid-responsive Transitional Cell Tumor Line...
Characterization of a Human, Sex Steroid-responsive Transitional Cell Carcinoma Maintained as a Tumor Line (R198) in Athymic Nude Mice

Lola M. Reid, Irwin Leav, Paul W. L. Kwan, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/44/10/4560

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.