Detection of Aflatoxin B_1 in Serum Samples of Male Japanese Subjects by Radioimmunoassay and High-Performance Liquid Chromatography

Seikichi Tsuboi,1 Toshitaro Nakagawa, Masahiro Tomita, Toshihiko Seo, Hidenori Ono, Koji Kawamura, and Noboru Iwamura

International Center for Medical Research, Kobe University School of Medicine, 7-chome Kusunoki, Chuo-ku, Kobe, 650 Japan

ABSTRACT

Aflatoxin B_1 (AFB$_1$) was detected in serum samples of healthy Japanese males by radioimmunoassay and high-performance liquid chromatography. Blood samples were obtained from 20 subjects after fasting and from 80 subjects after lunch. The subjects ranged in age from 20 to 63 years of age. Measurement of AFB$_1$ in the samples was performed by radioimmunoassay and was confirmed by high-performance liquid chromatography using a μPorasil column and a C$_18$-Bondapak column after the conversion of AFB$_1$ to its water adduct AFB$_{Ba}$. AFB$_1$ was detected in 5 of 20 fasting blood samples [20 to 56 pg/ml of serum; 33.6 ± 14.6 (S.D.)] and in 29 of 80 serum samples taken after lunch (20 to 1169 pg/ml of serum; 218.1 ± 268.3). Mass spectral analysis of the material obtained after high-performance liquid chromatography separation from serum samples confirmed the presence of AFB$_1$.

INTRODUCTION

A high incidence of hepatoma is seen throughout Africa and Southeast Asia. Many epidemiological studies in these areas have suggested that the exposure to environmental hepatocarcinogens is, in part, related to cultural factor and that aflatoxin, a potent hepatocarcinogen elaborated by Aspergillus flavus, may play a role in primary liver cancer (8-10, 12, 13). The hepatocarcinogenicity of AFB$_1$ in various experimental animals indicates a causal relationship between exposure to AFB$_1$ and hepatocellular carcinoma in humans (10, 12). Recently, AFB$_1$ has been demonstrated in human tissues by HPLC and RIA (6, 9, 11, 14, 15).

We used RIA and HPLC for the analysis of AFB$_1$ in serum samples. This is the first report on the detection of AFB$_1$ in Japanese serum samples.

MATERIALS AND METHODS

Equipment. A Waters Model 440 liquid chromatograph was used with a Shimadzu RF 530 fluorescence monitor and a Waters Data Module. Two 300- x 4-mm (inside diameter) stainless steel HPLC columns were used: a μPorasil and a C$_18$-Bondapak (Waters Associates, Milford, MA). A 300- x 10-mm (inside diameter) glass column was used for acidic alumina chromatography.

Reagents. Acidic alumina (Woelm Pharmaceuticals, West Germany) was prepared by adding 3% water (w/w), shaking for several min, and allowing the mixture to stand overnight to equilibrate. Crystalline aflatoxins B_1, B_2, G_1, and G_2 were purchased from Makor Chemicals, Ltd., Jerusalem, Israel. The elution solvents for HPLC were water-saturated chloroform:cyclohexane:acetonitrile:2-propanol (75:25:5:3:1.5) for μPorasil column chromatography and distilled water:methanol:acetoniitrile (67:20:13) for C$_18$-Bondapak column chromatography (4).

All chemicals were of special reagent grade available from commercial sources.

Sample Preparation and Extraction. Serum samples (10 ml each) were obtained after fasting from 20 healthy men in Kobe. Serum samples (10 ml each) were obtained 2 to 3 hr after lunch from 2 groups: Group I, 30 healthy men in Kobe; Group II, 50 healthy men in Osaka, 40 km east of Kobe.

Before analysis, 2400 dpm of [3H]AFB$_1$ (20 Ci/mmol; Moravek Biochemicals, Inc., City of Industry, CA) were added to each sample to obtain the recovery data.

Distilled water and methanol (10 ml, 9:1) were added to each serum sample. The samples were treated with 10 ml of hexane to remove lipids and were then extracted twice with 10 ml of chloroform. After acidic alumina chromatography (4), the solution was evaporated to dryness under nitrogen and dissolved in the mobile phase. HPLC (4, 11). The sample components were separated on a μPorasil column at an elution rate of 0.1 ml/min at a normal pressure of 400 psi. The fractions with the same retention time as that of authentic AFB$_1$ were collected and evaporated to dryness under nitrogen. One-half of each sample solution was counted to obtain the percentage recovery.

Trifluoroacetic acid (100 µl) and distilled water (100 µl) were added to each vial of standard or the sample in which AFB$_1$ was detected by RIA. The vials were heated in a steam bath at 50° for 30 min. Then the solution was evaporated and dissolved in the mobile phase. A 20-µl aliquot of the sample or standard was injected into the C$_18$-Bondapak column, and the AFB$_{Ba}$ peak was identified by comparing the retention time of the sample solution with that of the standard at an elution rate of 1.0 ml/min at a normal pressure of 1200 psi (4). The peak area and the retention time were determined by a Waters Data Module.

A Shimadzu RF 530 fluorescence monitor, with a 365 nm band pass filter in the excitation beam and a 425 nm long pass filter in the emission beam, was used for the detection of both AFB$_1$ and AFB$_{Ba}$.

RIA (2, 5). One-half of the solution was used for RIA.

A 0.2-ml mixture containing an appropriately diluted antibody with 32,000 dpm [3H]AFB$_1$ in Tris buffer (50 mm Tris, 1 mm EDTA, 1 mm dithiothreitol, 0.3 M KCl, 0.25 M sucrose, and 10% horse serum, pH 7.5) was added to the dried samples and to standards containing 0, 25, 50, 100, 250, 500, 750, and 1000 pg of AFB$_1$, in duplicate. The contents were agitated on a Vortex mixer for 10 sec and then incubated at 4° overnight. After incubation, 0.2 ml of dextran-coated charcoal solution (1% activated charcoal and 0.1% dextran sulfate sodium salt in the buffer without sucrose) was added to all tubes except the total radioactivity filter in the excitation beam and a 425 nm long pass filter in the emission beam, was used for the detection of both AFB$_1$ and AFB$_{Ba}$.

RIA (2, 5). One-half of the solution was used for RIA.

A 0.2-ml mixture containing an appropriately diluted antibody with 32,000 dpm [3H]AFB$_1$ in Tris buffer (50 mm Tris, 1 mm EDTA, 1 mm dithiothreitol, 0.3 M KCl, 0.25 M sucrose, and 10% horse serum, pH 7.5) was added to the dried samples and to standards containing 0, 25, 50, 100, 250, 500, 750, and 1000 pg of AFB$_1$, in duplicate. The contents were agitated on a Vortex mixer for 10 sec and then incubated at 4° overnight. After incubation, 0.2 ml of dextran-coated charcoal solution (1% activated charcoal and 0.1% dextran sulfate sodium salt in the buffer without sucrose) was added to all tubes except the total radioactivity controls. The tubes were agitated vigorously, allowed to stand for 10 min, and then centrifuged at 3000 rpm for 10 min. Next, 0.2 ml of the clear supernatant was pipetted into a counting vial containing 10 ml of scintillation fluid (10 g PPO and 40 ml of methanol in 2 liters of toluene) and then counted by a liquid scintillation counter.

Mass Spectral Analysis. The amount of each sample obtained after HPLC separation was not enough to be subjected to mass spectral analysis. Therefore, these samples and the other blood samples collected at Kobe University School of Medicine were separated by a μPorasil
column. The total volume of serum samples was more than 3200 ml. Peaks containing AFB, were collected, pooled, evaporated to dryness, and separated again by HPLC. The samples were subjected to mass spectral analysis using a JEOL JMS-D100 mass spectrometer system and a JMA-2000 mass spectrometer analyzer (Nihon Denshi, Japan). The analysis was performed with direct-sample inlet system at 300 μa and 36 eV.

RESULTS

Separation Using the μPorasil Column. The resolution of aflatoxins in the reference standards and the typical resolutions of samples are shown in Chart 1.

Each separated sample was collected for 1.5 min at the same retention time as the authentic AFBi.

Separation Using the Ci8-μBondapak Column. The aflatoxin standards and the collected samples which were used for the RIA detection of AFBi were evaporated, diluted with the eluting solvent, and injected into the Ci8-μBondapak column after the conversion of AFBi (and AFGi) to its water adduct AFB2a (and AFG3a). The resolution of aflatoxins in the reference standard and the typical resolutions of samples are shown in Chart 2.

The limit of detection was found to be 80 pg of AFB2a at Range 4 of the monitor. The signal:noise ratio which was obtained at that sensitivity was 5.33.

RIA. In the anti-AFBi system, only 150 to 250 pg of AFBi were required for 50% inhibition, and as little as 20 pg could be detected. The results of the analyzed aflatoxin values of the samples are shown in Chart 3 and Table 1.

A significant positive correlation was found between the values obtained by HPLC and those obtained by RIA (r = 0.73; p < 0.01). The values obtained by the Waters Data Module were higher than those obtained by RIA (Y = 1.26X + 14.16).

Recovery Data. The percentage recovery of AFBi was calculated from the ratio of the added [3H]AFBi radioactivity obtained before and after extraction.

The percentage of recovery of AFBi ranged between 47 and 72%.

Mass Spectral Analysis. Mass spectral analysis of the material obtained after HPLC separation confirmed the presence of AFBi. A prominent peak at m/e 312 appeared at a temperature of 180° (Chart 4).

DISCUSSION

Recent HPLC and RIA studies have demonstrated the presence of AFBi in human serum (6, 14, 16). Nelson et al. (6) detected AFBi levels of 2.52 to 4.68 ng/ml in serum samples from hospital control patients and patients with Reye's syndrome. They found that the lowest detectable level of AFBi was about 20 pg by RIA and approximately 200 pg by HPLC. Siraj et al. (14) examining liver, urine, and blood samples from normal subjects and patients with Reye's syndrome reported AFBi levels of 2 to 12 ng/ml serum by HPLC. The levels of AFBi reported in these studies were higher than those of the present
positive correlation was found between the values obtained by RIA and those obtained by μBondapak column chromatography; thus, the best method for the detection of AFB\textsubscript{1} in serum samples may be first to separate the sample by μPorasil column chromatography and then to measure AFB\textsubscript{1} by RIA or by μBondapak column chromatography after the conversion of AFB\textsubscript{1} to AFB\textsubscript{2}. The AFB\textsubscript{1} levels obtained in this study were very low except for 4 samples which contained more than 500 pg/ml. The source of ingested AFB\textsubscript{1} is unknown. The volunteers with high levels of AFB\textsubscript{1} consumed fried foods with soy sauce, coffee, and milk prior to the sampling. We had previously reported the presence of AFB\textsubscript{1} in certain types of foods (7, 15). We had detected AFB\textsubscript{1} in soy sauce, coffee, beer, and some kinds of processed foods. The amount of AFB\textsubscript{1} found in these materials was less than 10 ppb, the maximum permissible amount in Japan. The focus of this study was to evaluate the prevalence of aflatoxins in 2 large cities on the basis of the data obtained from serum samples. At present, it is not clear what levels of AFB\textsubscript{1} in serum are carcinogenic. Gross and Newberne (3) have shown that foods considered “aflatoxin free,” in the range of 10 ppb, may contain toxic levels that are within the carcinogenic range when subjected to an appropriate induction period.

The study of environmental carcinogens is becoming of great importance as the number and concentration of contaminants in the environment increase (1).

ACKNOWLEDGMENTS

We thank Dr. Kiiaki Sumino and Dr. Takaya Mio for their help with the mass spectral analysis. We thank Laudes Salamat, Dr. August L. Lingao, and Dr. Ernest O. Domingo, The University of Phillipines System, for helpful discussion.

REFERENCES

S. Tsuboi et al.

Detection of Aflatoxin B₁ in Serum Samples of Male Japanese Subjects by Radioimmunoassay and High-Performance Liquid Chromatography

Seikichi Tsuboi, Toshitaro Nakagawa, Masahiro Tomita, et al.

Cancer Res 1984;44:1231-1234.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/44/3/1231

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.