Mechanism of Estrogen Enhancement in the Growth of Androgen-dependent Shionogi Carcinoma 115

Shinzaburo Noguchi, Daishiro Takatsuka, Yukihiko Kitamura, Nobuyuki Terada, Naomi Uchida, Kenji Yamaguchi, Bunzo Sato, and Keishi Matsumoto

Depts of Pathology [S. N., D. T., K. M.] and Internal Medicine [B. S.] and Institute for Cancer Research [Y. K., N. T.], Osaka University Medical School, Kita-ku, Osaka 530, Japan; Shionogi Research Laboratories [N. U.], Fukushima-ku, Osaka 553, Japan; and Kobe Women's College [K. Y.], Chuo-ku, Kobe 650, Japan

ABSTRACT

The mechanism of estrogen enhancement in the growth of androgen-dependent Shionogi carcinoma 115 (SC115) maintained in castrated DS mice by low doses of androgen (10 µg of testosterone propionate or 4 µg of 5α-dihydrotestosterone/mouse/day) is reported. Although the low androgen treatment slightly but significantly (P < 0.05) stimulated tumor growth, concomitant estrogen (4 µg of 17β-estradiol/mouse/day) significantly (P < 0.01) enhanced the tumor growth. The high growth rate, histological type (medullary carcinoma), androgen dependency, and high androgen receptor content of the tumor grown during estrogen plus low androgen treatment did not differ significantly from those of the original SC115 tumor grown in normal males or in castrated mice treated with high doses of androgen. On the other hand, the treatment with low doses of androgen alone induced the development of slowly growing spindle-shaped cells from the medullary SC115 cells. The spindle-shaped cells containing low levels of androgen receptor were shown to be androgen independent and were also induced from the SC115 cells in nontreated castrated mice. These findings demonstrated that low doses of androgen and estrogen synergize to maintain and increase the growth of SC115 cells, whereas low doses of androgen alone fail to maintain the SC115 cells.

INTRODUCTION

Androgen-dependent mouse mammary carcinoma SC115 was established in 1964 by Minesita and Yamaguchi (1, 2). The original tumor arose spontaneously as an androgen-independent adenocarcinoma of mammary origin in a female DS mouse, and it grew equally well when transplanted to male and female mice. After passage in male DS mice for 19 generations, the tumor was found to be androgen dependent, defined by its failure to grow in either female or castrated male mice and by its ability to grow in female or castrated male mice given androgens. Cells derived from this tumor retain their androgen responsiveness in vivo (3–5) and in cell culture (6–9). We (4) and other investigators (3, 5–9) have reported that androgen activity on the stimulation of SC115 tumor growth is mediated by a specific AR system in SC115 cells.

We demonstrated in 1970 (10) that grafted SC115 tumor did not incorporate a significant amount of radioactivity following a s.c. injection of [3H]17β-estradiol into the host animals. On the other hand, Jung-Testas et al. (7) and King et al. (8) in 1976 demonstrated ER in SC115 cells in culture. We (11) in 1978 and other investigators (7, 8, 12) in 1982 also found ER in cytosols obtained from s.c. grafted SC115 tumors. Although other investigators (7, 8, 12) found ER in SC115 cells, they supported our original findings (2) that estrogen was unable to stimulate the proliferation of SC115 cells. In 1984, however, we (13) demonstrated for the first time the stimulative effect of estrogen on the growth of androgen-dependent SC115 tumor in vivo. These findings suggest that the response to 17β-estradiol and the ER content in the SC115 tumors have increased over the past 20 years.

In our recent studies (13), addition of 4 µg (per mouse per day) of 17β-estradiol to 10 µg of TP significantly enhanced the growth of SC115 tumor in castrated mice. The addition of lower or physiological doses of estrogen (1 µg of 17β-estradiol/mouse/day or estrogens secreted from the ovaries of normal adult female mouse) to 10 µg of TP was ineffective. Since the minimum effective dose of 17β-estradiol (4 µg/mouse/day) was less than that of TP (10 µg/mouse/day) and since the proactin-mediated estrogen activity could be ruled out (administration of bromocriptine with estrogen had no effect on the estrogen-enhanced tumor growth), the estradiol enhancement of the growth of SC115 tumor seems to be mediated by typical ER demonstrated in the tumor (13). In the present paper, we present the mechanisms of estrogen enhancement in the growth of androgen-dependent SC115 tumor maintained in castrated mice by low doses of androgen.

MATERIALS AND METHODS

Animals and Tumors. Two- to 3-month-old male DS mice raised in our laboratory were used. When castrated mice were used, the mice were castrated 1 week before the implantation of seed tumors or the experiment, unless specified otherwise. A fragment of tumor (about 1 mm) was inserted beneath the dorsal skin, using a specially devised needle (1). Seed tumors of SC115 were obtained from generations 328–335. The SC115 tumors were maintained in male DS mice.

Chemicals. 17β-[1,2,6,7-3H]Estradiol (92 Ci/mmol), [1,2,6,7-3H]testosterone (102 Ci/mmol), and [1,2-3H]DHT (40 Ci/mmol) were obtained from New England Nuclear (Boston, MA). Nonradioactive steroids were from Sigma Chemical Co. (St. Louis, MO). The other chemicals were of analytical grade.

Injections of Steroids. 17β-Estradiol, TP, or DHT was suspended in physiological saline. To each castrated mouse, except for the experiments shown in Tables 4 and 5, Control...
mice were given injections of 0.05 ml of vehicle.

Determination of Tumor Growth. Length and width of each tumor was measured once/week, and the mean of the length and width was used as an index of tumor size.

ER and AR in Tumor Cytosol. Methods for ER and AR assays were similar to those used in our previous study (13). For the examination of ER and AR, tumors (1-2 cm in diameter) induced from seed SC115 tumors in castrated mice treated with or without 10 or 100 µg of TP and/or 4 µg of 17β-estradiol and in normal male mice were used. Mice were sacrificed 24 h after the last injection of TP and/or 17β-estradiol or the castration. All procedures for ER and AR assays were carried out at 0-4°C. After removal of necrotic and connective tissues, the tumors were minced and homogenized in 6 volumes of TEDM buffer using a Polytron PT 10 homogenizer (Brinkmann Instruments, Inc., Westbury, NY) set at 4, with three 10-s runs, allowing 30 s for cooling between each run. The homogenate was centrifuged at 105,000 x g for 60 min, and the supernatant cytosol was obtained without the superficial lipid layer.

For ER assay, the cytosol in the TEDM buffer was incubated with 0.1-10 nM of 17β-[3H]estradiol in the presence of a 250-fold molar excess of unlabeled DHT for 20 h (total reaction volume, 0.4 ml). The unlabeled DHT was included for the estimation of 17β-[3H]estradiol binding sites, since 17β-[3H]estradiol bound to AR with relatively low but significant affinity in the tumor cytosol (4, 11). Parallel incubations were carried out with 17β-[3H]estradiol plus DHT in the presence of a 250-fold molar excess of unlabeled diethylstilbestrol to obtain the nonspecific binding values. For AR assay, the cytosol in the TEDM buffer was incubated with 0.1-10 nM of [3H]DHT for 20 h in 0.4 ml. Parallel incubations were carried out with [3H]DHT in the presence of a 250-fold molar excess of DHT. After incubation for ER and AR assays, 0.4 ml of a suspension of 10 µM Tris:1.5 mM EDTA:0.5% Norit A:0.005% Dextran T-70 (pH 8.0) at 20°C was added to each tube, followed by incubation for 30 min with intermittent vortexing. The tubes were centrifuged at 2000 x g for 10 min, and the aliquots (0.2 ml) of the supernatants were counted. The difference between the total and nonspecific binding values was considered the specific binding value. The maximum binding sites for the specific binding value and Kd were estimated by Scatchard plot analyses (14).

Retention of [3H]Testosterone and [3H]DHT in Cytosol and Purified Nuclei of Tumor following Injection of [3H]Testosterone. Tumors (1-2 cm in diameter) were obtained 3 and 6 weeks, respectively, after the transplantation of seed SC115 tumors into castrated mice injected daily with 10 µg of TP plus 4 µg of 17β-estradiol or 10 µg of TP. Twenty-four h after the last injection of TP with or without 17β-estradiol, [3H]testosterone (40 µCi; 416 pmol/mouse) suspended in 0.1 ml of saline was injected s.c. into the tumor-bearing mice. The mice, 4 in each group, were sacrificed 20 min and 1, 3, and 9 h after the injection of [3H]-testosterone, and the tumors were obtained. For the estimation of nonspecific retention value, 100 µg of unlabeled TP was injected s.c. into mice, 4 in each group, at 1 and 2 h before the injection of [3H]-testosterone.

For the preparation of cytosol and purified nuclei, our previous method was used (15, 16). In short, tumors were homogenized and separated into crude nuclear and supernatant fractions. The purified nuclei were prepared from the crude nuclear fraction using a discontinuous sucrose density gradient method, as reported previously (15). Recovery for the purification procedure was estimated by DNA determination. The cytosol fraction was obtained from supernatant fraction from crude nuclear separation.

Radioactive metabolites and [3H]testosterone in the cytosol and purified nuclear fractions were extracted and separated into polar metabolites, testosterone, and DHT fractions by paper chromatography, as reported previously (16). Finally, radioactive steroids in the testosterone and DHT fractions were recrystallized with 15 mg of testosterone and DHT, respectively, to constant specific activity, in order to obtain accurately the amounts of both radioactive androgens present in all samples. The amounts of [3H]testosterone and [3H]DHT were corrected for the loss during purification procedures. The difference between the total and nonspecific retention values for testosterone and DHT was considered the specific retention value.

Metabolism in Vivo of [3H]Testosterone in Tumor. Male mice bearing SC115 tumors were castrated 3-4 weeks after grafting. The castrated mice, 4 in each group, were given injections daily with 10 µg of TP or 10 µg of TP plus 4 µg of 17β-estradiol for 2 days starting from the day of castration. Twenty-four h after the last injection, [3H]testosterone (40 µCi; 416 pmol/mouse) mixed with 10 µg of testosterone or 10 µg of DHT plus 4 µg of 17β-estradiol was injected s.c. into the mice; the mice were sacrificed 1 h later. About 300-500 mg of tumors were homogenized, and radioactive steroids in the homogenates were extracted. The radioactive steroids in the extracts were separated into polar (origin) fraction and 2 non-polar fractions (testosterone plus 5α-androstan-3α,17β-diol and the other 4 steroids shown in Table 5) by paper chromatography in a hexane:benzene (1:1 v/v)-formamide system. Metabolites in the non-polar fractions were separated into each steroid, as described previously (17). Finally, except for polar metabolites, the separated radioactive steroids were recrystallized with 15 mg of nonradioactive standard steroids to constant specific activity in order to accurately estimate their amounts.

Estimation of Testosterone. The method for the estimation of serum testosterone by radioimmunoassay has been described in detail (18). The intra- and interassay coefficients of variation in male serum obtained from 10 assays were 8.5 and 10.9%, respectively.

Miscellaneous Assays. The protein and DNA concentrations were determined according to the methods of Lowry et al. (19) and Burton (20), respectively.

Histology. Tumors were fixed in 10% buffered formalin (pH 7.2), embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Although the original SC115 tumor is an undifferentiated medullary carcinoma showing a compact cell pattern, we have already described the development of androgen-independent spindle-shaped cells from the original SC115 cells after removal of androgen from the host (4, 21). The tumor was designated "medullary type" when more than 90% of the tumor was composed of undifferentiated medullary cells, "spindle cell type" when more than 90% of the tumor was composed of spindle-shaped cells, and "mixed type" when 90% or less of the tumor was composed of either medullary or spindle-shaped cells alone.

Statistical Methods. Tumor size, levels of AR and ER, incorporation of [3H]-labeled androgens, and serum testosterone levels were compared by Student's t-test (22).

RESULTS

Stimulative Effects of 17β-Estradiol on Tumor Growth. Seed SC115 tumors were transplanted into castrated mice injected daily with 10 µg of TP, 4 µg of 17β-estradiol, 10 µg of TP plus 4 µg of 17β-estradiol, or 100 µg of TP per mouse. The seed tumors were also transplanted in normal male mice. In the castrated mice, the tumors grew very slowly when only the vehicle was injected, but 10 µg TP treatment alone or 4 µg 17β-estradiol treatment alone slightly but significantly (P < 0.05) stimulated the tumor growth. Addition of 4 µg of 17β-estradiol to 10 µg of TP significantly (P < 0.01) enhanced the tumor growth (Chart 1, upper panel), and the growth rate approached the levels found in the normal males and in the castrated males treated with 100 µg of TP.

In the castrated mice, daily injections of 4 µg DHT per mouse stimulated the tumor growth slightly, and the growth rate reached the level induced by 10 µg of TP. The addition of daily injections of 4 µg 17β-estradiol per mouse to 4 µg of DHT significantly (P < 0.01) enhanced the tumor growth (Chart 1, lower panel). The findings demonstrate that androgen, either testosterone or DHT,
and estrogen synergize to increase growth rate of the SC115 tumor and that DHT is the more effective androgen.

Histology of Tumors in Castrated Mice Treated with or without TP and/or 17ß-Estradiol. The morphology of tumors grown from seed SC115 tumors depends on the hormonal environment of the hosts. The tumors were composed of medullary cells when the tumor growth in castrates was stimulated by daily injections of 100 µg of TP, whereas the tumors consisted of spindle cells when the castrates were injected with only vehicle. When seed SC115 tumors grew in castrated mice given injections of 10 µg of TP or 4 µg of 17ß-estradiol, about one-half of the tumors were of spindle cell type and the others were of mixed type. In contrast, most of the tumors were medullary type when 4 µg of 17ß-estradiol was added to 10 µg of TP (Table 1). The original SC115 tumors grown in normal male mice were composed of medullary cells (Table 1). The findings suggest that in castrated mice, daily injections of 100 µg of TP or 10 µg TP plus 4 µg of 17ß-estradiol are able to maintain and stimulate the growth of SC115 cells, whereas daily injections of 10 µg TP alone fail to maintain the SC115 cells and induce the development of androgen-independent spindle-shaped cells.

Androgen Dependency of Tumors Grown in Castrated Mice

Treated with a Low Dose of TP or a Low Dose of TP plus 17ß-Estradiol. The high growth rate and histological type (medullary carcinoma) of tumors grown in castrated mice daily with a low dose of TP (10 µg/mouse/day) plus 17ß-estradiol (4 µg/mouse/day) starting from the day of transplantation of seed SC115 tumors (TP and 17ß-estradiol tumor) did not differ significantly from those of the original SC115 tumors grown in normal male mice. However, the low growth rate and histological type (appearance of spindle-shaped cells) of tumors grown in castrated mice treated with 10 µg of TP alone (TP tumor) were similar to those of androgen-independent tumors developed from the original SC115 tumors after androgen removal. We already demonstrated the transformation of androgen-independent spindle-shaped cells from the original SC115 cells after removal of androgen from the host, since both types of cells had 6 identical chromosome abnormalities (4, 21). Therefore, we examined the androgen dependency of the TP tumors and the TP and 17ß-estradiol tumors grown in castrated mice.

Seed tumors from the TP tumors or the TP and 17ß-estradiol tumors were transplanted in male and female DS mice. The TP and 17ß-estradiol tumors could rapidly grow only in the males but not in the females, while the growth rate of the TP tumors in both males and females was almost the same and was evidently slower than that of the TP and 17ß-estradiol tumors in the male mice (Chart 2).

AR and ER in Tumors in Castrated Mice Treated with or without TP and/or 17ß-Estradiol. Tumors grown from seed SC115 tumors in castrated males treated with 10 µg of TP plus 4 µg of 17ß-estradiol were found to be androgen-dependent medullary carcinoma similar to the original SC115 tumor, whereas tumors grown in castrated males treated with 10 µg of TP alone were androgen independent and consisted predominantly of spindle-shaped cells (similar to the tumors grown in castrated mice). We reported already that androgen-independent sublines that consisted only of spindle-shaped cells contained no or smaller amounts of AR than did the original SC115 tumor (4, 16, 21).

Tumors for AR and ER assays were obtained 24 h after castration or the last injection of TP and/or 17ß-estradiol. AR and ER were found in the cytosols of all the tumors grown in normal males and in treated and nontreated castrated males. As shown in Table 2, concentrations (fmol/mg protein) of AR in the tumor cytosols were inversely related to the relative amounts of
ESTROGEN AND ANDROGEN-DEPENDENT TUMOR

Concentrations of cytosol AR and ER in tumors grown from seed SC115 tumors in normal male mice and in castrated male mice given injections with or without TP and/or 17β-estradiol

Table 2

<table>
<thead>
<tr>
<th>Dose of steroids</th>
<th>Castration</th>
<th>17β-Estradiol</th>
<th>TP</th>
<th>17β-Estradiol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum binding sites (fmol/mg protein)</td>
<td>AR</td>
<td>ER</td>
<td>AR</td>
<td>ER</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0</td>
<td>54 ± 4</td>
<td>0.40 ± 0.04</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
<td>19 ± 2</td>
<td>0.41 ± 0.02</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>4</td>
<td>43 ± 3</td>
<td>0.59 ± 0.06</td>
</tr>
<tr>
<td>Yes</td>
<td>10</td>
<td>0</td>
<td>21 ± 4</td>
<td>0.58 ± 0.03</td>
</tr>
<tr>
<td>Yes</td>
<td>10</td>
<td>6</td>
<td>59 ± 6</td>
<td>0.50 ± 0.03</td>
</tr>
<tr>
<td>Yes</td>
<td>100</td>
<td>0</td>
<td>48 ± 8</td>
<td>0.42 ± 0.04</td>
</tr>
</tbody>
</table>

* Mean ± SE of 4 separate determinations.

Table 3

Specific retention values of [3H]testosterone and [3H]DHT (fmol obtained from 100 mg tissue) in cytosols and nuclei of tumors in castrated and treated mice 20 min after s.c. injection of [3H]testosterone (416 pmol; 40 µCi/mouse)

The difference between the total and nonspecific retention values is considered the specific retention value. Radioactivity in the extract was separated into testosterone and DHT fractions by paper chromatography. Finally, the separated radioactive androgens were recrystallized to constant specific activity with 15 mg of unlabeled testosterone or DHT.

Table 4

Serum testosterone levels in castrated male mice after injection of 10 µg of TP with or without 4 µg of 17β-estradiol

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Serum testosterone level (ng/ml) after injection with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time after injection</td>
<td>TP (10 µg)</td>
</tr>
<tr>
<td>0</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>20 min</td>
<td>30.3 ± 4.6</td>
</tr>
<tr>
<td>2 h</td>
<td>8.5 ± 1.2</td>
</tr>
<tr>
<td>8 h</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>24 h</td>
<td>0.3 ± 0.1</td>
</tr>
</tbody>
</table>

* Mean ± SE of 4 separate determinations.

The results shown in Tables 2 and 3 are valid only if all circulating androgen was eliminated before the experiments were carried out. Since testosterone was administered as the propionate in a vehicle containing carboxymethylcellulose, this may not have been achieved in the 24-h period allowed. However, serum testosterone levels, which were high 20 min after the injection of 10 µg TP, decreased rather rapidly and approached the preinjection level 8 h after injection. Furthermore, no significant effect of 17β-estradiol on serum testosterone levels after the TP injection was demonstrated. These results suggest that almost all circulating testosterone, if not all, was eliminated within 24 h after the injection of 10 µg TP with or without 17β-estradiol (Table 4).

Effect of 17β-Estradiol on in Vivo Metabolism of [3H]Testosterone in SC115 Tumor

Consideration of the data of Chart 1 showing the greater effectiveness of DHT and the known ability of 17β-estradiol to inhibit testosterone metabolism by competition for 17β-ol-dehydrogenase suggest that an effect of estrogen may be to inhibit testosterone metabolism and thereby increase the intracellular concentrations of both testosterone and DHT in SC115 tumors. However, we failed to find such effects of 17β-estradiol on testosterone metabolism in these tumors on the third day of treatment (Table 5). Again, testosterone was the major intracellular androgen in the SC115 tumors regardless of estrogen. No significant increase in 5α-reductase activity was demonstrated in the presence of 17β-estradiol (Table 5).

DISCUSSION

The present findings demonstrate that relatively high doses of estrogen and low doses of androgen synergize to maintain and...
Castrated mice were given injections daily with 10 ng of TP with or without 4 ng of 17β-estradiol. The mice were sacrificed 1 h after the last injection. [3H]testosterone (10 ng (35 nmol); 40 Ci/mouse) with or without 4 ng of 17β-estradiol was injected into the mice, and the mice were sacrificed 1 h after the [3H]-testosterone injection.

Table 5

Effect of 17β-estradiol injection on in vivo metabolism of [3H]testosterone (10 µg; 40 Ci/mouse) in SC115 tumor

<table>
<thead>
<tr>
<th>Steroids</th>
<th>TP (10 µg)</th>
<th>[3H]estradiol (4 µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testosterone unchanged</td>
<td>385 ± 114</td>
<td>344 ± 48</td>
</tr>
<tr>
<td>DHT</td>
<td>48 ± 9</td>
<td>42 ± 6</td>
</tr>
<tr>
<td>4-Androstene-3,17-dione</td>
<td>45 ± 18</td>
<td>32 ± 8</td>
</tr>
<tr>
<td>5α-Androstane-3,17-dione</td>
<td><5</td>
<td><3</td>
</tr>
<tr>
<td>Androstosterone</td>
<td><10</td>
<td><11</td>
</tr>
<tr>
<td>5α-Androstane-3α,17-diol</td>
<td><19</td>
<td><10</td>
</tr>
<tr>
<td>Polar metabolites</td>
<td>980 ± 72</td>
<td>1184 ± 157</td>
</tr>
</tbody>
</table>

4 Mean ± SE of 4 mice.

increase the growth of androgen-dependent SC115 cells, whereas low doses of androgen alone fail to maintain the SC115 cells. In the presence of low doses of androgen and 17β-estradiol, tumors grown from seed SC115 tumors showed high growth rate, high AR content, histological type of medullary carcinoma, and androgen dependency, which did not differ significantly from those of the original SC115 tumor grown in normal males. In the presence of low doses of androgen alone, however, slowly growing androgen independent spindle-shaped cells having lower levels of AR were induced from the SC115 cells. It was reported that estrogen enhances androgen-induced prostate growth in castrated dogs to a degree comparable to that in spontaneous prostate hypertrophy (23, 24). The stimulative effect of estrogen on androgen-dependent growth of the dog prostate has been postulated to be due to an increase in AR content in the prostate cells by estrogen, because approximately 2-fold enhancement of cytosol AR by estrogen was demonstrated in the dog prostate after 1–3 weeks of treatment with 17β-estradiol (25). Although similar findings on the enhancement of androgen-dependent growth by estrogen were shown in the previous studies on the dog prostate (23, 24) and in the present study on the SC115 tumor, the present findings suggest another mechanism. Although the addition of 4 µg 17β-estradiol to the 10 µg TP treatment increased AR content in the tumor above the level observed with 10 µg TP alone, it did not increase the AR content above that in intact animals. It is suggested that 4 µg 17β-estradiol and 10 µg TP cooperatively can maintain the growth of SC115 cells with high AR content through ER and AR systems, respectively.

By using an in vitro culture technique, Desmond et al. (6) and Yates and King (26) found that the shape of SC115 cells changed from fibroblast-like to epithelial when androgen was removed from the medium. Although the morphological change of SC115 cells induced in vivo in the present study by androgen depletion or deficiency was inverse [medullary carcinoma (epithelial) to spindle-shaped (fibroblast-like) cells], the same SC115 cells changed from fibroblast-like to epithelial when androgen was removed in culture. Therefore, the discrepancy in changes of the morphology of the SC115 cells observed by us and other investigators (6, 26) seems to be due to the experimental conditions (in vivo and in vitro) used. 17β-Estradiol is known to competitively inhibit 17β-ol-dehydrogenase. Through this action, 17β-estradiol could enhance the effectiveness of testosterone and DHT by limiting metabolism of testosterone and DHT to 4-androstene-3,17-dione and 5α-androstane-3,17-dione, respectively. Therefore, 17β-estradiol would effectively increase intracellular concentrations of testosterone and DHT. However, no increase in testosterone or DHT concentration in the SC115 tumor was demonstrated after concomitant estrogen treatment (Table 5), though the data of Table 5 suggest that 17β-estradiol inhibited 17-ketosteroid formation, because content of 4-androstene-3,17-dione was decreased by concomitant 17β-estradiol treatment (Table 5). The main in vivo product(s) of testosterone were apparently polar metabolites (Table 5). Since polar metabolite(s) remained at the origin in the hexane:benzene (1:1 v/v) formamide system, polar metabolites seemed to be hydroxylated metabolite(s) of testosterone having no or less biological activity.

The present findings on the additive effect of androgen and estrogen on the growth stimulation of SC115 cells suggest that pharmacological doses of estrogen alone such as 100 µg of 17β-estradiol or diethylstilbestrol may be sufficient to maintain and stimulate the growth of SC115 tumors. This possibility should be examined in future studies. Recent studies have shown that the stimulative effect of sex steroids on cell proliferation may be mediated by specific polypeptide growth factor(s) (27). If the growth-stimulative activity of androgen on SC115 cells is mediated by such factor(s), the SC115 cells themselves may produce growth factor(s), since proliferation of cloned SC115 cells in culture has been shown to be augmented by physiological doses of androgens (6, 7, 9). It seems possible that the growth-stimulative effects on SC115 cells by physiological doses of androgen and by pharmacological doses of estrogen may be mediated by the same growth factor(s) produced through AR and ER systems.

It was found that estrogen stimulates the growth of epithelial cells from human metastatic prostate tumor in vitro in the presence of DHT, although DHT alone does not stimulate the growth of these cells (28). The administration of estrogen increases AR content in human prostate cancer (29). In contrast to the important roles of androgens, however, the effects of estrogens on the development and growth of prostatic hypertrophy and cancer in humans are not clear. The SC115 tumor seems to be a good model for elucidating the stimulative effect of estrogens on the growth of androgen-dependent tissues and tumors.

ACKNOWLEDGMENTS

The authors wish to thank D. Elick for editing the manuscript and Drs. K. Takeda and T. Komeno for supporting these studies.

REFERENCES

Mechanism of Estrogen Enhancement in the Growth of Androgen-dependent Shionogi Carcinoma 115

Shinzaburo Noguchi, Daishiro Takatsuka, Yukihiko Kitamura, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/45/10/4785

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.