Potent Antileukemic Activity of the Novel Cytostatic Agent Avarone and Its Analogues in Vitro and in Vivo

Werner E. G. Müller, Armin Maidhof, Rudolf K. Zahn, Heinz C. Schröder, Miroslav J. Gasić, Detlev Heidemann, August Bernd, Branko Kurelec, Eckart Eich, and Gerhard Seibert

Institut für Physiologische Chemie [W. E. G. M., A. M., R. K. Z., H. C. S.]; Poliklinik für Zahnerhaltungskunde [D. H.]; Fachbereich Pharmazie [E. E.], Universität, Duesbergweg, 6500 Mainz; Zentrum für Dermatologie und Venerologie, Universität, 6000 Frankfurt am Main [A. B.]; Hoechst AG, Abteilung Chemotherapie, 6230 Frankfurt am Main 80 [G. S.]; West Germany; Faculty of Science, Department of Chemistry, Belgrade [M. J. G.]; and Rudjer Boskovski Institute, Zagreb [B. K.], Yugoslavia

ABSTRACT

Avarone and avarol are novel cytostatic agents which have potent antileukemic activity both in vitro and in vivo (mice). Cell culture experiments revealed that the cytostatic activity of these two compounds on L5178Y mouse lymphoma cells was 13- to 14-fold higher than that determined for HeLa cells and 40- to 43-fold higher than that for human melanoma cells. Nontumor cells (human fibroblasts and human gingival cells) were highly resistant against the two compounds. The inhibitory potency of avarone on L5178Y cells (50% inhibitory concentration, 0.62 μM) was significantly higher than the avarol activity (50% inhibitory concentration, 0.93 μM). Modification of the molecule at the quinone ring or the double bond in the terpenoid skeleton resulted in a significant loss of activity. In vivo studies with L5178Y cells in the ascites of mice confirmed the strong antileukemic effect determined in vitro. At doses of 10 mg/kg given i.p. once daily for 5 days to mice bearing approximately 10^5 leukemia cells, avarone was found to be curative in about 70% of the mice (20% for avarol). The optimal daily i.p. dose of avarone increased life span over controls by 146% when treatment was begun 1 day after tumor implantation and by 87% when treatment was delayed until day 8. Avarol, although active, was less effective. Based on the determined log_{10} kill values, avarone can be classified as a highly active and avarol as a markedly active cytostatic agent. The efficacy of the two compounds is also emphasized by the therapeutic index of 11.7 for avarone and of 4.5 for avarol. The two agents were determined not to be either direct mutagens or premutagens in the Ames test.

INTRODUCTION

During the last few years simple biologically active prenylated quinone and hydroquinone derivatives have been discovered which are secondary metabolites from algae (1), tunicates (2), and sponges (3-5). Recently we reported that avarol inhibits proliferation of L5178Y mouse lymphoma cells in vitro, possibly by interfering with polymerization of tubulin (6). Further biological studies revealed that avarol inhibits mitosis of L5178Y cells in vitro, by possibly interfering with polymerization of tubulin (8). Both avarol and avarone have a low antibacterial and antifungal activity in vitro (9).

The work reported herein extends the in vitro testing of avarone and its analogues to include both normal and tumor cell lines in order to determine the broadness of the activity. After knowing that these novel compounds strongly inhibit proliferation of L5178Y cells in vitro, we could demonstrate that they are also highly potent antileukemic compounds in vivo.

MATERIALS AND METHODS

Materials. Benz[a]pyrene and 3-methylcholanthrene were from Sigma Chemical Co., St. Louis, MO; methyl methanesulfonate was from E. Merck, Darmstadt, West Germany; corn oil was from the "Zvijezda" Oil Refinery, Zagreb, Yugoslavia.

Male outbred NMRI mice (32-35 g; 8-9 months old) were obtained from Zentralinstitut für Versuchstiere, Hannover, West Germany. Avarone and Its Analogues. Avarone was isolated from the sponge Dysidea avara as described (5); the sponge material was collected in the Bay of Kotor (Yugoslavia) and near Giravaru (Maldives). Avarone was obtained from its corresponding hydroquinone avarol by Ag_2O oxidation (5). 4'MeA-avarone and 3'MeA-avarone were prepared from avarone (7). Dihydroavarol was prepared from avarol hydrogenation in methanol in the presence of palladium-charcoal. For the in vitro tests, the compounds were dissolved in 0.1% dimethyl sulfoxide (final concentration); this solvent had no influence on cell growth. In case of the in vivo i.p. applications, avarone and avarol were suspended in a 0.15% (w/v) solution of methylcellulose (Sigma M-0262).

Cell Culture. L5178Y mouse lymphoma cells (10) were grown in Eagle's minimum essential medium supplemented with 10% horse serum in roller tube cultures (11, 12). For the dose-response experiments, 5-ml cultures were initiated by inoculation of 5 × 10^5 cells/ml and were incubated at 37°C for 72 h; the controls showed a generation time of 10.5 h. The cell growth was determined by cell count with a Cytocount (128-channel counter; system Michaelis; Mainz, West Germany) counter (14). Primary cultures were grown as monolayers in Hanks' medium, containing 10% fetal calf serum (Boehringer Mannheim), in a fully humidified atmosphere of 4% CO_2 and air at 37°C. Gingival epithelial cells (primarily fibroblasts) of the third to fifth passage

1 This investigation was supported in part by a grant from the Deutsche Krebsforschungszentrum e.V. (W. E. G. M., E. E.) and by a grant from the Bundesministerium für Forschung und Technologie (German-Yugoslav cooperation program). We are also grateful to the Ministry of Fisheries, Male, Maldives. This paper is dedicated to Dr. Mildred Scheel.

2 To whom requests for reprints should be addressed, at Institut für Physiologische Chemie, Universität, Duesbergweg, 6500 Mainz, West Germany. Received 3/25/85; revised 6/10/85; accepted 6/19/85.

CANCER RESEARCH VOL. 45 OCTOBER 1985 4822
were used for the experiments. The cells were seeded at a density of 2.4 x 10^5 cells/cm^2; 24 h later the compounds were added to the cultures and incubation was routinely continued for an additional 24 h; a drug incubation time of 72 h revealed almost identical ED50 values. Subsequently, the cells were counted optically using a phase contrast microscope; the cell shape was examined in parallel. The generation time of the cultures varied between 21.3 and 22.1 h.

Human fibroblasts were obtained as primary cultures from foreskin (15). Cells from passages 6-9 were used for the experiments. They were grown as monolayers in RPMI medium with 20% fetal calf serum on collagen-coated plastic flasks (16). A generation time of 21-23 h was estimated. HeLa-Köln cells (derived from HeLa S3; ATCC CCL 2.2) were grown in Dulbecco’s modified Eagle’s medium and 10% fetal calf serum. The generation time of these cells was determined to be 18 h. G-361 human malignant melanoma cells (ATCC CRL 1424) were grown on plastic flasks in McCoy Medium 5A supplemented with 10% fetal calf serum. The generation time was approximated at 24 h. These three cell lines were seeded at a density of 1.7 x 10^7 cells/cm^2 and were incubated at 37°C in 5% CO2; 24 h later the compounds were added to the cultures and the incubation was continued for an additional 3 days. Cell number was determined optically.

The EDM was estimated by logit regression (17). The data from 10 parallel experiments were evaluated. Student’s t test was used to determine the significance between the EDM values as described (18). The slopes of the EDM values were expressed as the tangent and were obtained by logit regression of the dose-response data.

Tumor Passage In Vivo. The L5178Y leukemic cells (10) were maintained by serial transplantation as an ascitic tumor in 32- to 35-g male outbred NMRI mice. The appropriate concentration of leukemic cells for i.p. inoculation (1.8 x 10^7 cells/mouse) was obtained from ascites fluid. Under these conditions, 95-100% of the mice developed a palpable ascites and 50% of the animals died between days 13 and 17 postinoculum. The increase of body weight in the mice developed a palpable ascites and 50% of the animals died between days 13 and 17 postinoculum.

Chemotherapy. The evaluation of the antitumor effect of avarone and avarol in L5178Y leukemia was performed as follows: mice were made leukemic by i.p. injection of 1.8 x 10^6 L5178Y cells. One or 8 days later, the animals were divided into groups of 10 mice. One group was used as a control (treated with the methylcellulose solution only), whereas the other groups were treated i.p. with the drugs for 5 consecutive days.

The antitumor activity was assessed according to the following criteria: the weight changes reflect the difference between the mean weights on the fifth and first days of treatment. The percentage increase in median life span over the control ([ILS (%)]) was calculated (19) and ranked (20) as described.

\[
\% \text{ ILS} = \frac{T - C}{C} \times 100
\]

where T is the median day of death of treated mice, and C is the median day of death of controls; thus

\[
\% \text{ ILS} = \frac{T}{C} \times 100
\]

Median day of death was estimated by the method appropriated for grouped observation (17). Tumor growth delay (T - C value) was estimated according to the published procedure (19). As the predetermined number of tumor cells in the mice, we chose twice the number of L5178Y cells initially used for inoculation (3.6 x 10^7). This number was reached in the tumor-bearing control mice after 9.1 days. The period of logarithmic growth of tumor cells in control mice was calculated to be from day 8 until day 14 after tumor inoculation; thus the number of 3.6 x 10^6 tumor cells (determined after 9.1 days) reached within this period. Higher cell numbers could not be chosen, because in effectively treated mice this predetermined value was only slightly exceeded. Tumor-free survivors were excluded from these calculations. The log_{10} cell kill values (per dose as well as the gross and net cell kill values) were calculated from the formula published by Corbett et al. (19). The tumor volume doubling time was estimated from the straight line of the log-linear growth plot of the tumor in the control group (19); a value of 2.1 days was obtained. The log_{10} kill values were converted to an arbitrary activity rating as described (19).

The therapeutic index was calculated according to Skipper and Schmidt (21).

Mutagenicity Testing. The mutagenic activity of the avarone derivatives was measured with the Ames microsomal test using Salmonella typhimurium Ta 100 strain (22, 23). The S-9 fraction served as the postmitochondrial fraction. It was isolated from the immature carp liver 48 h after i.p. treatment with 3'-methylcholanthrene (50 mg/kg), as described (23, 24). The number of his^R revertants was counted by a Dynatech Model 980 counter. Benzo(a)pyrene and methyl methanesulfonate served as premutagen and direct mutagen standards.

Mixed Function Oxygenase Induction Testing. The procedure used was described in earlier papers (24, 25). Briefly, the test samples, dissolved in com oil (0.1 ml), were i.p. injected into the carp. After 48 h the animals were killed, the livers were removed and immediately processed for enzyme activity determination. The same procedure was used both in positive (receiving 3-methylcholanthrene in corn oil) and negative controls (receiving corn oil alone). The activity of BaPDMO was measured in the postmitochondrial fraction, following the method of Payne and Penrose (26), and was expressed in pmol 3-hydroxybenzo(a)pyrene formed per mg protein per min. The protein concentration was determined according to the method of Lowry et al. (27).

RESULTS

Initial evidence for the high in vitro cytostatic activity of avarone was obtained from studies with L5178Y mouse lymphoma cells (5). In the present study the corresponding quinone, avarone, was determined to be even more active in this cell system in vitro. Moreover both compounds turned out to be highly potent antileukemic agents in mice. The anticancer activity is coupled with a low toxicity to normal cells.

In Vitro Activity

Table 1 summarizes data showing the selective cytotoxicity of avarone and avarol to cultured L5178Y cells relative to the other cells tested. Against L5178Y cells, avarone was the most cytotoxic of the materials tested; avarol and dihydroavarol were moderately cytotoxic, and the methylamino derivatives of avarol were essentially ineffective except at high concentrations.

The slopes of the log-linear dose-response curves of avarone and its analogues at the ED50 values were identical within the same cell line. However, they differed from one to another line as follows: L5178Y cells, 1.4; HeLa cells, 3.5; melanoma cells, 5.6; human fibroblasts, 6.1; and human gingival cells, 10.2.

In Vivo Activity

Toxicity. The i.p. toxicity of both avarone and avarol for male mice is low (Table 2). The LD50 values for acute toxicity are 181.2 mg/kg for avarone and 269.1 mg/kg for avarol. The corresponding values for subacute toxicity are 172.1 mg/kg for avarone and 218.4 mg/kg for avarol. The dose-survival curves are steep; the slopes at the LD50 values vary between -2.5 and -1.9. In a close approximation, an increase in the dose that was lethal to
ANTILEUKEMIC ACTIVITY OF AVARONE

Table 1
Influence of avarone and its analogues on growth of selected cell lines

The ED_{50}s were determined as described under "Materials and Methods." The values represent the means of 10 parallel experiments each; the means ± SD are given.

<table>
<thead>
<tr>
<th></th>
<th>ED_{50} (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L5178Y cells</td>
</tr>
<tr>
<td>Avarone</td>
<td>0.62 ± 0.11</td>
</tr>
<tr>
<td>4'MeA-avarone</td>
<td>4.16 ± 0.52</td>
</tr>
<tr>
<td>3'MeA-avarone</td>
<td>10.02 ± 1.27</td>
</tr>
<tr>
<td>Avarol</td>
<td>0.93 ± 0.13</td>
</tr>
<tr>
<td>Dihydroavarol</td>
<td>1.25 ± 0.21</td>
</tr>
</tbody>
</table>

* ND, not determined.

Table 2
Toxicity of avarone and avarol for male mice

Mice (groups of 5 animals per cytostatic dose) were treated either once (acute toxicity) or daily for 5 days (subacute toxicity) with avarone or avarol. For each compound and each duration of application 5 different doses were chosen. The number of surviving animals was determined after 40 days. The LD_{50} and LD_{10} values were determined by logit regression (17).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Acute LD_{50}</th>
<th>Acute LD_{10}</th>
<th>Subacute LD_{50}</th>
<th>Subacute LD_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avarone</td>
<td>181.2</td>
<td>111.1</td>
<td>172.1</td>
<td>109.7</td>
</tr>
<tr>
<td>Avarol</td>
<td>269.1</td>
<td>156.4</td>
<td>218.4</td>
<td>138.6</td>
</tr>
</tbody>
</table>

Only 10% of the mice by 2.5- to 2.8-fold killed 90% of the animals at this increased level.

A daily i.p. injection of 80 mg/kg for 10 days of both avarone and avarol caused no deaths among mice, and the weight of the animals compared to the untreated controls did not change significantly. No toxicity was apparent in the form of loss of hair or nail destruction.

Chemotherapeutic Activity. The median life span of the L5178Y lymphoma-bearing control mice was 14.3 days. Both avarone and avarol were determined to increase the life span of the tumor-bearing mice considerably (Table 3). The animals were given i.p. injections of the compounds for 5 consecutive days, starting at day 1 or day 8; 50 mg/kg/day was chosen as the highest dosage, a dosage which is 2.2- to 2.8-fold lower than the LD_{10} (see Table 2).

Two schedules for the agent treatment were chosen, days 8-12 and days 1-5 after tumor inoculation (Table 3). In general, the treatment starting at day 1 after tumor inoculation was superior to that beginning the treatment at day 8. The schedule starting at day 1 after tumor inoculation was selected, as this increased the LD_{10} (Table 2).

The influence of avarone and avarol on L5178Y cell growth in vivo is shown in Table 4. The tumor cell number was determined 1 day after termination of drug application (treatment schedule, days 8-12). It can be seen that the compounds markedly inhibited tumor growth at each dose used. A slight mortality of the treated animals was noted only with the lowest dosages. This effect is caused by the tumor and is not attributed to the drug effect (the mortality in the controls was 40%).

Therapeutic Index. The 90% effective doses of both avarone and avarol on tumor growth were obtained by plotting the dose-response data reported in Table 4, according to Skipper and Schmidt (21). These values were determined for avarone to be 9.4 mg/kg/day, and for avarol to be 31 mg/kg/day. From these data and the LD_{10} values (Table 2), the therapeutic ratios were calculated for avarone to be 11.7, and for avarol to be 4.5.

Mutagenicity

Ames Test. Avarone, as well as its analogues, avarol, 3’MeA-avarone, and 4’MeA-avarone, were determined not to be mutagenic at concentrations between 50 and 125 µM; the number of revertants per plate varied between 84 and 148, a range which was counted also in the dimethyl sulfoxide controls. By the application of the activating S-9 fraction it could be further elucidated that the compounds displayed neither direct nor activated mitogenic potentials in the Ames microsomal test system. As indirect mutagen benzo(a)pyrene was used (5 µM, 501 ± 45 revertants; and 10 µM, 1591 ± 118 revertants), while methyl methanesulfonate served as direct mutagen (1600 µM caused 1305 ± 117 revertants).

BaPmo Induction Capacity. Neither avarone nor its analogues were inducers of BaPmo activity in experimental fish. At doses of 50 or 100 mg/kg of avarone or its analogues, a BaPmo activity of 30.2 ± 8 µg of 3-hydroxybenzo(a)pyrene formed per mg protein per min was measured; the enzyme in the control animals, given injections of 0.1 ml corn oil, showed an activity of 35 ± 13. Under the identical test conditions 3-methylcholanthrene (40 mg/kg) caused a 15-fold induction of the BaPmo (495 ± 99 pg/mg/min).

DISCUSSION

As demonstrated in this work, the sesquiterpenoids avarone and avarol are cytostatic agents which have an unusually high selectivity for lymphoma cells. The agents have been isolated from the sponge Dysidea avara (5, 6), which is very abundant in...
ANTILEUKEMIC ACTIVITY OF AVARONE

Table 3
Effect of avarone and avarol on L5178Y mouse leukemia in vivo

All mice were given i.p. inoculations of L5178Y cells on day 1 or day 8. Treatment was i.p. as indicated. The assessment of the antitumor activity was performed according to the criteria summarized under "Materials and Methods."

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose (mg/kg/injection)</th>
<th>Schedule</th>
<th>Total dose (mg/kg)</th>
<th>ILS (%)</th>
<th>Weight change (g)</th>
<th>T - C value</th>
<th>Log kill/dose</th>
<th>Gross log kill</th>
<th>Activity rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avarone</td>
<td>1</td>
<td>Days 8-12</td>
<td>5</td>
<td>43</td>
<td>+0.5</td>
<td>9.7</td>
<td>0.28</td>
<td>1.39</td>
<td>0/10 ++ - +++</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Days 8-12</td>
<td>50</td>
<td>59</td>
<td>-1.5</td>
<td>12.0</td>
<td>0.34</td>
<td>1.72</td>
<td>0/10 ++ - +++</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Days 8-12</td>
<td>250</td>
<td>53</td>
<td>-5.3</td>
<td>9.8</td>
<td>0.28</td>
<td>1.42</td>
<td>0/10 ++ - +++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Days 1-5</td>
<td>5</td>
<td>97</td>
<td>+3.2</td>
<td>14.7</td>
<td>0.42</td>
<td>2.11</td>
<td>0/10 +++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Days 1-5</td>
<td>50</td>
<td>146</td>
<td>+0.5</td>
<td>21.2</td>
<td>0.61</td>
<td>3.04</td>
<td>7/10 +++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Days 1-5</td>
<td>250</td>
<td>93</td>
<td>-8.9</td>
<td>17.2</td>
<td>0.49</td>
<td>2.47</td>
<td>3/10 +++</td>
</tr>
<tr>
<td>Avarol</td>
<td>1</td>
<td>Days 8-12</td>
<td>5</td>
<td>9</td>
<td>+0.4</td>
<td>6.4</td>
<td>0.18</td>
<td>0.92</td>
<td>0/10 +</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Days 8-12</td>
<td>50</td>
<td>34</td>
<td>-1.4</td>
<td>8.1</td>
<td>0.28</td>
<td>1.31</td>
<td>0/10 ++</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Days 8-12</td>
<td>250</td>
<td>41</td>
<td>-5.5</td>
<td>10.6</td>
<td>0.50</td>
<td>1.52</td>
<td>0/10 ++ - +++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Days 1-5</td>
<td>5</td>
<td>50</td>
<td>+3.5</td>
<td>10.2</td>
<td>0.29</td>
<td>1.46</td>
<td>0/10 ++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Days 1-5</td>
<td>50</td>
<td>87</td>
<td>+0.9</td>
<td>16.1</td>
<td>0.46</td>
<td>2.31</td>
<td>2/10 +++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Days 1-5</td>
<td>250</td>
<td>77</td>
<td>-3.4</td>
<td>15.1</td>
<td>0.43</td>
<td>2.17</td>
<td>4/10 +++</td>
</tr>
</tbody>
</table>

Table 4
Effect of avarone and avarol on mice with L5178Y cells

All mice were given injections of L5178Y cells and were treated with the compounds from day 8 until day 12 as described in Table 3. The tumor cell number was determined at day 13; the results came from five independent experiments.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dose (mg/kg/day)</th>
<th>Mean tumor size (cells/animal × 10^-9)</th>
<th>% of inhibition</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avarone</td>
<td>1</td>
<td>1.5 ± 0.3</td>
<td>87.4</td>
<td>1/10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.0 ± 0.2</td>
<td>91.5</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.9 ± 0.2</td>
<td>92.4</td>
<td>0/10</td>
</tr>
<tr>
<td>Avarol</td>
<td>1</td>
<td>1.9 ± 0.4</td>
<td>83.9</td>
<td>2/10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.6 ± 0.4</td>
<td>86.4</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.1 ± 0.2</td>
<td>90.7</td>
<td>0/10</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td>11.8 ± 2.2</td>
<td>0</td>
<td>4/10</td>
</tr>
</tbody>
</table>

cells in vitro are comparably high (EDso 0.62 and 0.93 μM, respectively). Under otherwise identical conditions the therapeutically used cytostatics bleomycin (13) and 9-β-D-arabinofuranosyladenine (28) reduce cell proliferation by 50% at 1 and 2.9 μM. In all the cell systems studied, avarone was determined to be significantly more active than avarol. In view of these findings and in view of earlier observations (9), demonstrating that avarol is converted at physiological pH into its corresponding oxidized product, more careful investigations will be needed in the future. At present we have no indication that differences in the medium pH account for the differences in drug effects on the various cell lines.

In the preceding study (5) we reported that avarol diacetate has the same cytostatic activity as avarol, suggesting that avarol diacetate has to be enzymatically hydrolyzed before it can interfere with the cell metabolism. We have extended the structural activity relationships and found that a replacement of the hydroquinone ring by a quinone (avarone) unit increased the cytostatic activity of the sesquiterpenoid avarol. A substitution of a hydrogen atom in the quinone ring by a methylamino group significantly diminished the activity. However, hydrogenation of the only double bond in the terpenoid skeleton had no drastic consequence on the biological activity, suggesting that this site is a promising target for further modification, with the aim to increase the water solubility of avarone-avarol.

Of importance for further developments of avarone-avarol as a potential cancer chemotherapeutic agent was the finding that the two compounds exhibit a potent antileukemic activity also in vivo. The reported studies with L5178Y lymphoma cells in mice revealed that both avarone and avarol caused tumor cell kill values which are ranked according to the published arbitrary activity rating scale (19), into the class of markedly active to highly active anticancer agents. The percentage of ILS values achieved by the two compounds are higher than 25% (20), also indicating a marked anticancer activity. From the experiments reported in this study it is clear that avarone has a higher cytostatic and even a more curative activity than does avarol. We have chosen two schedules for the treatment (days 1 to 5 and days 8 to 12), and found that activity of the compounds was higher when the compounds were applied (for 5 days) 1 day after inoculation of the tumor. Studies are under way to clarify...
whether an improvement of the schedule is possible.

The acute and subacute toxicities of the two compounds, as well as the 90% inhibitory doses on L5178Y cell growth in mice have been determined. From these data the therapeutic indexes were calculated as follows: avarone, 11.7; and avarol, 4.5. These values are in the range of those determined from cyclophosphamide, daunomycin, and methotrexate (20).

The physiological cause for the potent antileukemic activity of avarone and avarol in vivo is not yet known. At present we are investigating whether differences in the oxidation-reduction potential or pH values between tumor and normal tissue (29) contribute to the tumor-specific effect of the two compounds described. The latter approach seems to be promising in view of recent findings, showing that the biological effects of avarone and avarol are higher at pH 6 than at pH 7 or 8.6 (9), and also that the pH values within the ascites of tumor-bearing mice are lower compared to that of tumor-free animals.4

The potential pharmacological value of avarone and avarol hold further promise, in that these agents possess neither mutagenic nor premutagenic potentials nor induction capacity for benzo(a)pyrene monoxygenase.

REFERENCES

Potent Antileukemic Activity of the Novel Cytostatic Agent Avarone and Its Analogues *in Vitro* and *in Vivo*

Cancer Res 1985;45:4822-4826.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/45/10/4822

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.