Reactivity of Monoclonal Antibody DF3 with a High Molecular Weight Antigen Expressed in Human Ovarian Carcinomas

Eliot L. Friedman,1 Daniel F. Hayes, and Donald W. Kufe
Laboratory of Clinical Pharmacology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115

ABSTRACT

We have previously described the monoclonal antibody (MAb) DF3, prepared against a human breast carcinoma. MAb DF3 reacts with a high molecular weight glycoprotein detectable in human breast carcinomas and in human milk. Previous studies have demonstrated that DF3 antigen levels are elevated in the plasma of patients with breast and ovarian cancer. The present study has further examined the reactivity of MAb DF3 with human ovarian carcinomas. Immunoperoxidase staining demonstrated reactivity of MAB DF3 with 95% of benign, borderline, and malignant tumors (serous, mucinous, and endometrioid) of the ovary. Furthermore, malignant tumors contained cytoplasmic DF3 antigen while benign tumors expressed the antigen only on apical surfaces. Western blot analyses demonstrated that the MAb DF3 reactive ovarian antigen (DF3-O) was a glycoprotein with a heterogenous molecular weight ranging between 300,000 and 450,000. This antigen was detectable by immunofluorescence on the cell surface of five of six cultured human ovarian carcinoma cell lines. The extent of cell surface reactivity with MAb DF3 was equivalent to or greater than that obtained with MAb OC125, an antibody generated against coelomic epithelium and developmental amnion. Furthermore, uptake of 125I-labeled MAB DF3 by human ovarian carcinoma xenografts in athymic mice was 5.4- and 6.2-fold higher than the respective uptake noted in liver and control tumor (P = 0.031). These findings suggest that DF3-O antigen is similar if not identical to the antigen detected in human breast carcinomas by MAb DF3. Thus, MAB DF3 may be a useful reagent in immunodiagnostic evaluation of patients with ovarian cancer.

INTRODUCTION

We have previously described MAb1 designated DF3, which was prepared against a membrane-enriched fraction of human breast carcinoma (1). The breast cancer-associated antigen with which MAB DF3 reacts has been designated DF3 antigen. DF3 antigen is a component of the human milk fat globule membrane and has a heterogenous molecular weight of 300,000-450,000 (2). Detailed biochemical analysis has demonstrated that the DF3 antigen is a glycoprotein with the MAB DF3 binding site involving the glycosidic linkage between carbohydrate and protein moieties. Immunoperoxidase staining has demonstrated the presence of DF3 antigen in apical borders of secretory mammary epithelial cells and in the cytosol of less well-differentiated malignant cells (1). DF3 antigen expression has been shown to correlate with clinicopathological parameters related to degree of breast tumor differentiation and estrogen receptor status (3). These findings suggest that MAB DF3 reacts with a differentiation antigen present in both human milk and breast carcinoma cells (4).

A double-determinant EIA has been developed in our laboratory and used to monitor plasma levels of DF3 antigen (5). We detected elevated levels of circulating DF3 antigen in 42 of 58 patients with breast cancer and in only 6 of 111 age-matched controls without cancer (5). In contrast, elevated circulating DF3 EIA levels were not observed in patients with esophageal, gastric, or colorectal cancer. However, 20 of 43 patients with ovarian cancer had elevations of an antigen reactive with MAB DF3 (5). A subsequent study demonstrated that the circulating ovarian cancer-associated antigen DF3-O is also heterogenous with molecular weights ranging between 300,000 and 450,000 (6).

In the present study, we have demonstrated by immunoperoxidase staining the presence of DF3-O antigen in ovarian carcinomas. Analysis by Western blot and fluorescent flow cytometry has further characterized the molecular weight, heterogeneity, and cell surface expression of the DF3-O antigen. Finally, the ability to specifically localize 125I-MAB DF3 in ovarian carcinoma xenografts in nude mice suggests that MAB DF3 may be a useful reagent for radioimmunooimaging of patients with epithelial ovarian carcinomas.

MATERIALS AND METHODS

Preparation of MAB DF3. MAB DF3 was produced by the immunization of BALB/c mice with a partially purified membrane-enriched fraction of human breast carcinoma metastatic to liver (1). The antibody was purified from ascites by Protein-A-Sepharose-CL-4B chromatography (Pharmacia Fine Chemicals, Piscataway, NJ) (5).

Immunoperoxidase Studies. Two-µm sections of frozen tissue were stained by a modification (7, 8) of the avidin-biotin-peroxidase complex (9) (Vectastain ABC Kit; Vector Laboratories, Burlingame, CA). Histopathological grading of all biopsy specimens was performed and specimens were classified as either benign or malignant. All malignancies were further graded as borderline (Grade 1), well-differentiated adenocarcinoma (Grade 2), or poorly differentiated adenocarcinoma (Grade 3).

Cell Lines. Six human ovarian cell lines were grown in media comprised of Dulbecco's modified Eagle's medium (GIBCO Laboratories, Chagrin Falls, OH) with 10% fetal bovine serum, 1% penicillin/streptomycin, 1% nonessential amino acids, and 1% sodium pyruvate. Each line exhibited a distinctive epithelial morphology, karyotype, and pattern of growth in vivo (10). Breast carcinoma cell line ZR-75-1 (11) was grown in RPMI 1640 medium (GIBCO) with 10% fetal bovine serum, 1% 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, and 1% penicillin/streptomycin. The cell lines were maintained in logarithmic growth phase by monolayer cultures and disrupted with trypsin and 0.02% EDTA (4).

Polyacrylamide Gel Electrophoresis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was performed using a 3-15% gradient gel in a modified Laemmli buffer system (12). Ovarian and breast carcinoma tissue culture cell lines were harvested and resuspended in phosphate-buffered saline (pH 7.1), phenylmethylsulfonyl fluoride (0.2 mM), and aprotinin (0.015 trypsin inhibitor units/ml). Cell suspensions were sonicated and 5 µg protein was applied to the gradient gel and electrophoresed at 16 mamp for 15 h. Additionally, tissue culture supernatant from each cell line was analyzed simultaneously on the gel. Protein measurement of each sample was determined using the Bio-Rad protein assay. (Bio-Rad Laboratories, Richmond, CA).

Received 1/31/86; revised 5/22/86; accepted 6/24/86.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by U.S. Public Health Service Grants CA-38869 (D. W. K.) and CA-10141 (D. F. H.), awarded by the National Cancer Institute, Department of Health and Human Services and by an American Cancer Society Faculty Research Award (D. W. K.).

2 To whom requests for reprints should be addressed, at Laboratory of Clinical Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, MA 02115.

3 The abbreviations used are: MAb, monoclonal antibody; EIA, enzyme-linked immunosorbent assay.
Immunoblotting. Transfer of the DF3-O and DF3 antigens to nitrocellulose paper was performed by the method of Towbin et al. (13). Nonspecific binding sites on the nitrocellulose paper were blocked by incubation with 5% bovine serum albumin in phosphate-buffered saline for 1 h at room temperature. The nitrocellulose paper was then incubated with MAb DF3 (0.25 μg/ml) for 2 h, rabbit anti-mouse IgG at a dilution of 1:500 for 1 h, and then 125I-Protein A at 5 × 107 cpm/ml for 2 h. The blots were washed 5 times, dried, and exposed to Kodak XAR-5 film.

Indirect Immunofluorescent Cell Sorter Analysis of Cell Lines with Monoclonal Antibodies. Cultured cells (1–2 × 106) were washed extensively and incubated with 0.1 ml of a 1:20 dilution (final concentration, 50 μg/ml) of MAb DF3, MAb OC125 (14), or MAb 287 (an isotype-identical nonreactive control antibody). Cells were incubated at 4°C for 60 min and then washed twice. Cells were then reacted with 0.1 ml of a 1:100 dilution of goat anti-mouse fluorescein isothiocyanate (Tago, Inc., Burlingame, CA), incubated at 4°C for 30 min, washed 3 times, and analyzed on a dual-beam fluorescence-activated cell sorter (Coulter, Hialeah, FL). Intensity of fluorescence was determined for 10,000 cells in each population and was compared with the fluorescence of the nonreactive immunoglobulin of the same isotype.

Growth of Human Tumor Xenografts in Athymic Mice. Athymic (Swiss nude) mice (aged 8–10 weeks) were implanted simultaneously with 2–3 × 106 OVCAR-3 human ovarian carcinoma cells in one flank and 0.3 ml of 1–2 mm3 pieces of HPB-ALL (a human T-cell lymphoma cell line that does not react with MAb DF3) in the other flank. Tumors grew for approximately 3 weeks, achieving mean sizes of 0.5–1.0 cm3 for OVCAR-3 and 1–2 cm3 for HPB-ALL.

Iodination of MAB DF3. MAB DF3 was iodinated by the lodogen technique as described previously (15). MAB DF3 (200 μg) was reacted with 1.4 μCi of iodine-125. Free iodine-125 was separated by filtration using a G-25 Sephadex column (Pharmacia). Final specific activity of 0.5 μCi/μg of protein was obtained.

Tumor Distribution Studies. The athymic mice bearing the two human tumor xenografts were injected with 10 μg of 125I-MAb DF3. Mice were sacrificed and dissected at 24, 72, and 96 h. Radioactivity of each tissue was determined using a Minigam counter (LKB/Wallac, Turku, Finland). The amount of tissue (cpm/g) was calculated for each organ.

Statistical Determinations. The difference between cpm/g of OVCAR-3 and cpm/g of other organs was analyzed using the Wilcoxon signed-rank test for paired data (16).

RESULTS

Immunoperoxidase Staining of Ovarian Neoplasms and Benign Ovarian Tissue. MAB DF3 reactivity with benign tissue specimens, borderline ovarian tumors, and malignant tumors was evaluated by immunoperoxidase staining of frozen tissues. Of the 43 patients studied, all but 2 had positive staining. MAB DF3 reacted with all histologies, regardless of grade, including serous, mucinous, endometrioid, clear cell, and undifferentiated adenocarcinomas. Additionally, 2 samples of normal ovary reacted with MAB DF3. Furthermore, 9 of 11 (82%) benign and borderline tumors demonstrated positive immunoperoxidase staining. Of these, one benign mucinous tumor and one borderline mucinous tumor failed to stain with MAB DF3. All 31 true epithelial ovarian malignancies (Grades II and III) displayed reactivity with MAB DF3.

Examination of immunoperoxidase-stained tissue demonstrated two distinct patterns of MAB DF3 reactivity. While normal tissue, benign tumors, and borderline tumors exhibited predominantly apical staining patterns (Fig. 1), malignant tumors had cytoplasmic and apical staining (Fig. 2).

The percentage of cells that reacted with MAB DF3 and the patterns of reactivity for each specimen are illustrated in Figs. 3 and 4. All 3 specimens that were either normal ovary or benign tumor displayed apical staining only (Fig. 3, A and B). Three of 5 borderline serous tumors (60%) demonstrated apical staining alone while 2 demonstrated both apical and cytoplasmic staining (Fig. 3C). In contrast, only 2 of 17 (12%) malignant tumors demonstrated apical staining alone and 15 (88%) displayed cytoplasmic staining with or without apical staining (Fig. 3D). Of these 15 tumors, 4 (27%) had a considerable number of cells that demonstrated cytoplasmic reactivity (Fig. 3D).

Of the 7 patients with mucinous tumors, 3 (43%) demonstrated apical staining only and 2 (28%) demonstrated both apical and cytoplasmic staining (Fig. 4A). Of the 5 patients with an endometrioid histology, 2 (40%) displayed apical staining only and 3 (60%) displayed cytoplasmic reactivity with MAB DF3 with or without apical staining (Fig. 4B). Likewise, MAB DF3 reacted with other histological subclasses of epithelial ovarian malignancies, including clear cell, mixed clear cell, and endometrioid, mixed serous, and mucinous and undifferentiated adenocarcinoma. However, no clear pattern of staining predominated (Fig. 4C). All 6 tumors demonstrated apical staining with 4 of the 6 (67%) additionally demonstrating cytoplasmic staining. Neither the intensity nor pattern of the staining correlated with the histological type of malignancy or...
MONOCLONAL ANTIBODY DF3 IN OVARIAN CANCER

grade of malignancy. The patterns of staining are summarized in Table 1.

Tissue obtained from multiple sites from each of 11 patients was stained with MAb DF3 to examine tumor heterogeneity. Five of the 11 patients (45%) demonstrated identical staining patterns in the primary ovarian tumor and either the contralateral ovarian tumor or distant metastases. The other 6 patients (55%) demonstrated distinct staining of primary tumors and metastases or contralateral ovarian tumors (Fig. 5).

In addition, specimens of normal gynecological tissue and other gynecological malignancies were examined for reactivity with MAb DF3. Reactivity was demonstrated in tissue from one uterus and 2 endocervices but was not present in any of the 3 exocervices. Reactivity, when noted, was restricted to the glandular epithelium. Two specimens of cancer in situ of the cervix exhibited cytoplasmic staining patterns with MAB DF3. While all 7 specimens of adenocarcinoma of the uterus demonstrated apical reactivity with MAB DF3, 5 (71%) exhibited a cytoplasmic staining pattern.

Western Blot Analysis. Cell extracts of 5 human ovarian cancer cell lines and one human breast cancer cell line (ZR-75-1), as well as the tissue culture supernatants of each cell line, were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose, and monitored for reactivity with MAB DF3 (Fig. 6).

<table>
<thead>
<tr>
<th>Ovarian tumor</th>
<th>Histology</th>
<th>Normal ovaries</th>
<th>Ovarian tumors</th>
<th>Benign tumors</th>
<th>Borderline tumors</th>
<th>Malignant tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of specimens</td>
<td>2</td>
<td>2 (100)</td>
<td>2 (100)</td>
<td>2 (50)</td>
<td>5 (88)</td>
<td>31 (100)</td>
</tr>
<tr>
<td>Number with reactive</td>
<td>2</td>
<td>2 (100)</td>
<td>2 (100)</td>
<td>2 (50)</td>
<td>5 (88)</td>
<td>31 (100)</td>
</tr>
<tr>
<td>Number with cytoplasm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 (43)</td>
<td>22 (71)</td>
</tr>
</tbody>
</table>

* Numbers in parentheses, percentage.
Monoclonal Antibody DF3 in Ovarian Cancer

Irradiated cultured human carcinoma cells were incubated with MAbs DF3 (), OC125 (), and 287 (), followed by fluoresceinated goat anti-mouse IgG. Fluorescence was determined with a fluorescence-activated cell sorter. A, breast carcinoma ZR-75-1; B-G: ovarian carcinoma; B, OV-A; C, OV-D; D, OV-M; E, OVCAR-3; F, OV-P; G, OV-S.

Cell surface MAbs reactivity with human carcinoma cell lines. Cultured human carcinoma cells were incubated with MAbs DF3 (), OC125 (), and 287 (), followed by fluoresceinated goat anti-mouse IgG. Fluorescence was determined with a fluorescence-activated cell sorter. A, breast carcinoma ZR-75-1; B-G: ovarian carcinoma; B, OV-A; C, OV-D; D, OV-M; E, OVCAR-3; F, OV-P; G, OV-S.

Fluorescence Intensity

Fig. 6. Reactivity of MAb DF3 with human breast and ovarian carcinoma cell lines. Each lane contains 5 µg of cellular extract from breast cancer (ZR-75-1), ovarian cancer (OV-A, OV-D, OV-M, OVCAR-3, OV-S) or their respective tissue culture supernatants (s/n ZR-75-1, etc.). The antigen preparations were subjected to electrophoresis on a 3-15% sodium dodecyl sulfate-polyacrylamide gel, transferred to nitrocellulose paper, and analyzed for reactivity with MAb DF3. Kd, kilodalton.

Fluorescence Intensity

Fig. 7. Cell surface MAb reactivity with human carcinoma cell lines. Cultured human carcinoma cells were incubated with MAbs DF3 (), OC125 (), and 287 (), followed by fluoresceinated goat anti-mouse IgG. Fluorescence was determined with a fluorescence-activated cell sorter. A, breast carcinoma ZR-75-1; B-G: ovarian carcinoma; B, OV-A; C, OV-D; D, OV-M; E, OVCAR-3; F, OV-P; G, OV-S.

Fluorescence Intensity

Fig. 8. Tissue distribution of 125I-MAb DF3 in athymic mice bearing human tumor xenografts. Athymic mice bearing OVCAR-3 and HPB-ALL were given injections of 5 µCi 125I-MAb DF3 (0.5 µCi/µg). The mice were sacrificed at 24, 72, and 96 h. The radioactivity of tumor (), blood pool (), liver (), and control tumor (D) was measured at each time interval. Points, mean of determinations from 5 mice; bars, SE.

From Table 2, it can be seen that the cpm/g value of liver decreased from 3.9 x 10^5 at 24 h to 1.6 x 10^5 at 72 h and to 1.4 x 10^5 at 96 h. A similar trend was noted in the HPB-ALL control tumor. The blood pool remained stable at approximately 5.0 x 10^5 cpm/g of tissue throughout the experimental period (Fig. 8). The difference between cpm/g of OVCAR-3 and cpm/g of liver and control tumor at 72 and 96 h was significant (P = 0.031).

At 24 h, the ratio of cpm/g of OVCAR-3 to cpm/g of liver and control tumor was 1.4 and 2.3, respectively (Table 2). At 72 h the ratio of cpm/g in OVCAR-3 to liver and control tumor was 5.4 and 6.2, respectively (Table 2). At 96 h this ratio was 5.2 with respect to both liver and control tumor. The ratio of cpm/g of OVCAR-3 to blood pool at 72 and 96 h was 1.3 and 1.4, respectively.

Discussion

Several monoclonal antibodies have demonstrated varying patterns of immunological reactivity with gynecological malignancies. MAb OC125 reacts with both serous and endometrioid adenocarcinomas but lacks reactivity with mucinous adenocarcinomas (17). Conversely, MAbs OCA and OCAA react with mucinous adenocarcinomas but lack reactivity with serous and endometrioid adenocarcinomas (18). In contrast, monoclonal antibody F36/22, generated against a human breast carcinoma, cross-reacts with 100% of human ovarian carcinoma, regardless of histology (19).
In the present study, immunoperoxidase staining has demonstrated reactivity of MAAb DF3 with an antigen present in serous, endometrioid, mucinous, clear cell, and undifferentiated epithelial ovarian carcinomas. A pattern of reactivity was noted in the tumors that reacted with MAAb DF3: Although only a few samples were examined, benign tumors and specimens of normal ovaries demonstrated no cytoplasmic staining. However, 72% of malignant tumors demonstrated cytoplasmic staining. In contrast, 3 of 20 patients (15%) with nonovarian gynecological malignancies, and only 4 of 59 control women (7%) have elevated circulating DF3-O antigen (6). Thus, the finding of DF3-O antigens in plasma could result from cell surface shedding or from lysis of tumor cells. Regardless of the mechanism, these antigens circulate at higher levels in patients with ovarian cancer as compared to normal women.

In the present study, we monitored ovarian carcinoma cell lines for cell surface expression of DF3-O antigen. Five of the 6 ovarian carcinoma cell lines demonstrated cell surface reactivity with MAAb DF3. The intensity of immunofluorescence staining paralleled the amount of DF3-O antigen detected in these cells by transblot analysis. More importantly, in each case reactivity with MAAb DF3 was equivalent to or more intense than that obtained with MAAb OCI25. These findings would suggest that DF3-O antigen is expressed to an equal or greater extent than CA-125 on the surface of ovarian carcinoma cells. Furthermore, expression of the two antigens by ovarian carcinoma cells may be complementary.

Radioimaging studies of human ovarian carcinoma have been performed with limited success using other monoclonal antibodies, including those generated against human milk fat globule membranes (20, 21), placental alkaline phosphatase (22, 23), and osteogenic sarcomas (24). The intense cell surface expression of DF3-O antigen on the surface of ovarian carcinoma cells suggested that MAAb DF3 might be useful for radioimaging. Distribution studies were thus performed with 125I-labeled MAAb DF3 in nude mice bearing the OVCAR-3 ovarian carcinoma xenograft. Radiolabeled MAAb DF3 preferentially accumulated in the OVCAR-3 tumor as compared to liver, blood pool, and a control tumor. Thus, the demonstration of cell surface DF3-O antigen expression and selective uptake of radiolabeled MAAb DF3 in ovarian carcinoma xenografts in nude mice indicates that MAAb DF3 may also be useful in the radioimmunodetection of this disease.

Finally, we have recently demonstrated that the DF3 antigen detectable in human breast carcinomas is a high molecular weight glycoprotein (2). Further studies will be necessary to determine whether the DF3-O antigen is identical or simply related to the DF3 antigen in breast carcinoma. Preliminary characterization has shown that the DF3-O antigen is present in a single cell line. In contrast, our prior study has shown that serum from patients with epithelial ovarian carcinoma may contain MAAb DF3-reactive antigens of molecular weight ranging 300,000-450,000 (6). Thus, the finding of DF3-O antigens in plasma could result from cell surface shedding or from lysis of tumor cells. Regardless of the mechanism, these antigens circulate at higher levels in patients with ovarian cancer as compared to normal women.

Table 2: Biokinetics of 125I-MAAb DF3 following i.v. injection into nude mice bearing human tumor xenografts

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Radioactivity after i.v. injection of 125I-MAAb DF3 (cpm/g tissue × 10³)</th>
<th>% of injected dose³</th>
<th>OVCAR/tissue</th>
<th>P value⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 h</td>
<td>72 h</td>
<td>96 h</td>
<td>72 h</td>
</tr>
<tr>
<td>OVCAR-3⁵</td>
<td>5.3 ± 1.7³</td>
<td>8.7 ± 4.80</td>
<td>7.3 ± 4.52</td>
<td>10.7</td>
</tr>
<tr>
<td>HPB-ALL⁶</td>
<td>2.3 ± 0.55</td>
<td>1.4 ± 0.55</td>
<td>1.4 ± 0.77</td>
<td>1.7</td>
</tr>
<tr>
<td>Blood poof⁷</td>
<td>4.9</td>
<td>6.5 ± 2.90</td>
<td>5.2 ± 1.77</td>
<td>8.0</td>
</tr>
<tr>
<td>Liver</td>
<td>3.9 ± 0.98</td>
<td>1.6 ± 0.65</td>
<td>1.4 ± 0.44</td>
<td>2.0</td>
</tr>
<tr>
<td>Kidney</td>
<td>3.8 ± 0.92</td>
<td>1.6 ± 0.55</td>
<td>1.5 ± 0.39</td>
<td>2.0</td>
</tr>
<tr>
<td>Stomach</td>
<td>1.9 ± 0.31</td>
<td>1.1 ± 0.45</td>
<td>1.1 ± 0.34</td>
<td>1.4</td>
</tr>
<tr>
<td>Small intestine</td>
<td>1.1 ± 0.58</td>
<td>0.5 ± 0.23</td>
<td>0.4 ± 0.11</td>
<td>0.6</td>
</tr>
<tr>
<td>Colon</td>
<td>0.8 ± 0.20</td>
<td>0.4 ± 0.16</td>
<td>0.3 ± 0.04</td>
<td>0.5</td>
</tr>
<tr>
<td>Abdominal wall muscle</td>
<td>1.9 ± 0.82</td>
<td>1.2 ± 0.45</td>
<td>1.4 ± 0.34</td>
<td>1.5</td>
</tr>
<tr>
<td>Gastrocnemius</td>
<td>1.5 ± 1.36</td>
<td>1.1 ± 0.24</td>
<td>0.8 ± 0.36</td>
<td>1.4</td>
</tr>
<tr>
<td>Myocardium</td>
<td>2.6 ± 0.91</td>
<td>1.6 ± 0.39</td>
<td>1.3 ± 0.30</td>
<td>2.0</td>
</tr>
<tr>
<td>Lung</td>
<td>4.5 ± 1.82</td>
<td>2.7 ± 1.50</td>
<td>2.9 ± 0.73</td>
<td>3.3</td>
</tr>
<tr>
<td>Femur</td>
<td>1.1 ± 0.59</td>
<td>0.6 ± 0.39</td>
<td>0.6 ± 0.17</td>
<td>0.7</td>
</tr>
<tr>
<td>Skin</td>
<td>3.7 ± 0.51</td>
<td>1.9 ± 1.19</td>
<td>1.8 ± 0.62</td>
<td>2.3</td>
</tr>
</tbody>
</table>

* Injected dose = 8.1 × 10⁶ cpm.
* Radioactivity value at 72 and 96 h compared to OVCAR-3.
* Human ovarian carcinoma cell line (positive MAAb DF3 reactivity).
* Mean ± SD.
* Human peripheral blood acute lympholastic leukemia cell line (negative MAAb DF3 reactivity).
* Only one mouse value at 24 h; at other time periods n = 5.

5193
periodic acid-Schiff positive, thus confirming the presence of a carbohydrate moiety.

Other high molecular weight glycoproteins have been described as tumor-associated antigens. The DF3-0 antigen is distinct from CA-125 as reflected by differences in their molecular weights, as well as the complementary nature of reactivity with sera from patients with ovarian cancer (6). An antigen defined by MAB MOv2 appears to be a high molecular weight glycolipid present in secreted mucus of a variety of malignancies (25, 26). MAB MOv2 exhibits a different pattern of cross reactivity than MAB DF3. MAB HMFG1 recognizes a high molecular weight component of human milk and breast carcinoma cell lines which may be similar to DF3-0 (27). However, the reactivity of MAB HMFG1 with colon carcinoma (20) clearly distinguishes this MAB from MAB DF3 (1).

Recent studies have suggested that several MAb-defined, high molecular weight, mucin-like glycoproteins may represent a family of tumor-associated antigens. For example, the cell membrane determinants defined by MAb Ca1, designated the CA antigen, are two major glycoproteins with estimated molecular weights of approximately 350,000 and 390,000 (28, 29). The CA antigen is structurally similar to the DF3 antigen in that most of the carbohydrate is O-glycosidically linked to a polypeptide. However, the CA antigen has been detected in a wider range of human tumors (28, 29) than the DF3 antigen (1). Furthermore, the MABs CA1 and DF3 clearly react with different epitopes on these antigens as determined by solid-phase inhibition assays. The reactive determinants defined by MABs F36/22 (19) and 115-D8 (30) also reside on the same antigenic determinant recognizing a high molecular weight glycoprotein detectable in human breast carcinomas and human milk, as demonstrated by double-determinant radioimmunooassays and immunoblot analysis. However, these MAbs are also distinguished from MAB DF3 by reactivity patterns in fixed tissues and solid-phase inhibition assays. The purification and further identification of each of these components will be necessary to determine the extent of their biochemical and immunological similarities.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Robert C. Knapp (Brigham & Woman’s Hospital, Boston, MA) for providing the ovarian cancer cell lines and Dr. Otto Bahn (Boston City Hospital, Boston, MA) for providing ovarian cancer tissue specimens.

REFERENCES

Reactivity of Monoclonal Antibody DF3 with a High Molecular Weight Antigen Expressed in Human Ovarian Carcinomas

Eliot L. Friedman, Daniel F. Hayes and Donald W. Kufe

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/46/10/5189

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.