Transplantability and Sensitivity to Natural Killer Cells of Aclarubicin-resistant Murine Lymphoma

Yoshikazu Sugimoto, Yoko Hirakawa, Nobuyuki Tanaka, Makoto Tahara, Isao Sato, Toshio Nishimura, Hideo Suzuki, and Nobuo Tanaka

Institute of Applied Microbiology, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

ABSTRACT

DBA/2 mice implanted i.p. with an aclarubicin (ACR)-resistant subline of L5178Y cells survived 4- to 5-fold longer than those with the parental cells; and animals with the Adriamycin- or bleomycin-resistant subline displayed an intermediate survival period. The i.p. treatment of mice with cyclophosphamide markedly enhanced i.p. growth of the ACR-resistant cells, suggesting that a certain host defense mechanism participates in the lower transplantability. In vitro, the ACR-resistant subline showed much higher sensitivity to natural killer cells. The i.p. pretreatment with anti-asialo-GM1 antibody markedly reduced the mean survival period of mice implanted i.p. with the ACR-resistant cells, suggesting that natural killer cells play an important role in the defense against transplantation of the ACR-resistant cells.

INTRODUCTION

We have isolated cell sublines of murine lymphoblastoma L5178Y for resistance to ADM* (1), ACR (2), BLM (3), or MCR (4) and observed that the resistance is due to a change of plasma membrane and its transport system (5, 6). The ADM-, ACR-, and MCR-resistant sublines show pleiotropic resistance, but the BLM-resistant subline has selective resistance (1-4). We have also found that S'-nucleotide phosphodiesterase activity of plasma membrane is higher in the four drug-resistant sublines than the parental cells, although the relationship of the enzyme activity to the drug resistance remains to be determined (7, 8). For the purpose of elucidating membrane alteration of drug-resistant neoplastic cells, we have prepared syngeneic monoclonal antibody specific for the ACR-resistant subline of L5178Y cells (9).

Several investigators have reported that drug-resistant tumor cells are often immunogenic and show lower transplantability than the parental cells (10-15). We have also found that the ACR-resistant subline of L5178Y cells shows lower transplantability to DBA/2 mice, the syngeneic host, than the parental cells, and studied the mechanism of lower transplantability. The results are presented in this paper.

MATERIALS AND METHODS

Rabbit anti-asialo-GM1 antibody was purchased from Wako Pure Chemical Industries, Osaka, Japan. Viable Mycobacterium bovis strain BCG was obtained from Nippon BCG Manufacture Co., Tokyo, Japan, and lipopolysaccharide of Escherichia coli 055:B5 was from Difco Lab., Detroit, MI. [35S]Sodium chromate (590.67 mCi/mg) was a product of New England Nuclear, Boston, MA.

Received 12/10/85; revised 5/27/86; accepted 7/29/86.

RESULTS

Transplantability of L5178Y Cell Sublines to Syngeneic Host. Female DBA/2 mice were implanted i.p. with the parental, or ACR-, ADM-, or BLM-resistant subline of L5178Y cells. Ascitic tumor appeared in all the animals. The mean survival times of tumor-bearing mice and survivors on Day 60 are presented in Table 1. Mice implanted with the ACR-resistant cells survived 4- to 5-fold longer than those with the parental cells, and animals with ADM- or BLM-resistant cells showed intermediate survival periods. The longer survival time of mice, bearing ACR-resistant cells, was repeatedly confirmed by further experiments (data not shown).

The doubling time of L5178Y cell sublines cultured in vitro in Fischer's medium with 10% horse serum is shown in Table 2. The ACR-resistant cells grew more slowly in vitro than the parental cells.
Table 1. Survival time of DBA/2 mice, implanted i.p. with the parental, or ACR-, ADM-, or BLM-resistant subline of L5178Y cells

The mean survival times of all three resistant sublines significantly differ from that of the parental cell line (P < 0.001). Each group consisted of ten mice, and each mouse was implanted i.p. with 5 x 10⁶ cells.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Survival time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental</td>
<td>12.9 ± 0.9⁹</td>
</tr>
<tr>
<td>ACR resistant</td>
<td>66.9 ± 9.9</td>
</tr>
<tr>
<td>ADM resistant</td>
<td>35.9 ± 3.1</td>
</tr>
<tr>
<td>BLM resistant</td>
<td>24.3 ± 1.2</td>
</tr>
</tbody>
</table>

* Mean ± SE.

Table 2. Growth rate of the parental and drug-resistant sublines of LSI 78Y cells

Table 3. Effect of cyclophosphamide on i.p. transplantation of the parental or ACR-resistant L5178Y cells

<table>
<thead>
<tr>
<th>Cyclophosphamide</th>
<th>Mean ± SE.</th>
<th>Mean ± SE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental</td>
<td>13.5 ± 1.3</td>
<td>12.8 ± 0.8</td>
</tr>
<tr>
<td>ACR resistant</td>
<td>60.0 ± 7.7</td>
<td>26.6 ± 4.0</td>
</tr>
</tbody>
</table>

* Mean ± SE.

Table 4. Sensitivity of various sublines of L5178Y cells to NK cells in vitro

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Cyclophosphamide Mean survival time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental</td>
<td>13.8 ± 0.8⁹ (P < 0.05)</td>
</tr>
<tr>
<td>ACR resistant</td>
<td>12.2 ± 0.8</td>
</tr>
<tr>
<td>ADM resistant</td>
<td>60.0 ± 7.7 (P < 0.001)</td>
</tr>
<tr>
<td>BLM resistant</td>
<td>26.6 ± 4.0</td>
</tr>
</tbody>
</table>

* Mean ± SE.

Table 5. Sensitivity of various sublines of L5178Y cells to cytotoxic macrophages in vitro

Table 6. Effect of anti-asialo-GM1 antibody or carrageenan on transplantability of the parental or ACR-resistant cell line of L5178Y lymphoma

<table>
<thead>
<tr>
<th>Treatment with anti-asialo-GM1</th>
<th>Effector:target ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell line</td>
<td>25:1</td>
</tr>
<tr>
<td>Parental</td>
<td>0.8 ± 1.2⁹</td>
</tr>
<tr>
<td>ACR resistant</td>
<td>0.8 ± 1.3</td>
</tr>
<tr>
<td>ADM resistant</td>
<td>0.8 ± 1.2</td>
</tr>
<tr>
<td>BLM resistant</td>
<td>0.8 ± 1.2</td>
</tr>
</tbody>
</table>

* Percentage of lysis.
¹ Mean ± SE.
² P < 0.001 compared with the parental L5178Y cells.

Table 7. Effect of anti-asialo-GM1 antibody on tumoricidal activity of spleen cells in mice

<table>
<thead>
<tr>
<th>Treatment with anti-asialo-GM1</th>
<th>Effector:target ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell line</td>
<td>25:1</td>
</tr>
<tr>
<td>Parental</td>
<td>0.8 ± 1.2</td>
</tr>
<tr>
<td>ACR resistant</td>
<td>0.8 ± 1.2</td>
</tr>
<tr>
<td>ADM resistant</td>
<td>0.8 ± 1.2</td>
</tr>
<tr>
<td>BLM resistant</td>
<td>0.8 ± 1.2</td>
</tr>
</tbody>
</table>

* Percentage of lysis.
¹ Mean ± SE.
² P < 0.001 compared with the control.

Effect of Cyclophosphamide on Transplantability of L5178Y Cells. Female DBA/2 mice were given injections i.p. of 100 mg of cyclophosphamide per kg 2 days before transplantation of the ACR-resistant cells. The drug treatment markedly reduced the mean survival period of the tumor-bearing mice, presumably by disrupting the host defense system (Table 3). The results suggest that a certain host defense mechanism participates in the lower transplantability of ACR-resistant cells.

Sensitivity to NK Cells or Cytotoxic Macrophages in Vitro. The NK sensitivity of L5178Y cell sublines is presented in Table 4. The ACR-resistant subline displayed high sensitivity to NK cells, but the parental, ADM-resistant, and BLM-resistant sublines were rather resistant to NK cells. The degree of NK sensitivity of the ACR-resistant cells was similar to that of YAC-1 cells. The latter was used as a positive control. All the four sublines showed a similar level of sensitivity to cytotoxic macrophages, although the ACR-resistant cell subline exhibited a little higher sensitivity than the other cell lines (Table 5).

Effect of Anti-Asialo-GM1 Antibody or Carrageenan on Transplantability of L5178Y Cells. Murine NK cells are damaged by anti-asialo-GM1 antibody more markedly than cytotoxic macrophages (18, 19). As summarized in Table 6, the pretreatment with anti-asialo-GM1 antibody markedly enhanced growth of the ACR-resistant cells and reduced the mean survival period of the tumor-bearing mice, but it did not significantly affect that of the parental cells. On the other hand, the pretreatment with carrageenan, which affects macrophages more profoundly than NK cells, slightly reduced the mean survival time of animals bearing the ACR-resistant cells, but it did not significantly affect that of mice bearing the parental cells. The NK activity of spleen cells was markedly reduced by the treatment of mice with anti-asialo-GM1 antibody (Table 7). The results suggest that NK cells play a more important role in the defense mechanism against transplantation of the ACR-resistant cells than cytotoxic macrophages.

DISCUSSION

The current studies reveal that the in vivo growth of the ACR-resistant subline of L5178Y cells is suppressed by a host defense mechanism.
mechanism and that the cell subline is highly sensitive to NK
cells.

NK cells participate in an antitumor immune defense mecha-
nism (20). It is of interest how NK cells recognize and kill
tumor cells. The parental cell line of L5178Y is resistant to,
but the ACR-resistant subline is sensitive to, NK cells. There-
fore, comparative studies of both cell lines may be useful for
e elucidating the mechanism of NK sensitivity.

Several investigators reported that drug-resistant tumor cells
are highly immunogenic and are not easily transplanted to the
syngeneic host (10–15). The multiple drug resistance of tumor
cells is due to membrane alteration (2, 6, 21). Since tumor-
associated transplantation antigens are related to plasma mem-
brane, the antigens may become manifest simultaneously with
membrane change of drug resistance. Therefore, it remains to
be determined whether the lower transplantability of the drug-
resistant sublines of L5178Y is partly due to immunogenicity.

ACKNOWLEDGMENTS

The authors express their deep thanks to Dr. Hamao Umezawa,
Institute of Microbial Chemistry, Tokyo, for his advice and cooperation
in the present studies.

REFERENCES

1. Nishimura, T., Muto, K., and Tanaka, N. Drug sensitivity of an Adriamycin-
resistant mutant subline of mouse lymphoblastoma L5178Y cells. J. Antibiot.
2. Nishimura, T., Suzuki, H., Muto, K., Tanaka, Y., and Tanaka, N. Studies
on aclacinomycin A resistance in mouse lymphoblastoma. J. Antibiot. (To-
characteristics of a bleomycin-resistant subline of mouse lymphoblastoma
Isolation, drug sensitivity, and some biochemical and genetic properties of
macromycin-resistant mouse lymphoblastoma L5178Y cells. J. Antibiot.
5. Nishimura, T., Suzuki, H., Muto, K., and Tanaka, N. Mechanism of Adria-
mycin resistance in a subline of mouse lymphoblastoma L5178Y cells. J.
influx of Adriamycin into anthracycline-resistant cells. J. Antibiot. (Tokyo),
7. Sugimoto, Y., Nishimura, T., Suzuki, H., and Tanaka, N. Alteration of
membrane-associated enzymes in drug-resistant sublines of mouse lympho-
of drug-resistant tumor cells: 230-kilodalton protein identified by monoclonal
10. Fujii, H., and Mihich, E. Selection of high immunogenicity in drug-resistant
sublines of murine lymphomas demonstrated by plaque assay. Cancer Res.,
of L1210 and its sublines. I. Effect of an increased antigen density on tumor
expression of murine leukemia antigen on L1210 parental and drug-resistant
13. Rapp, L., and Fujii, H. Differential antigenic expression of the DBA/2
lymphoma L1210 and its sublines: cross-reactivity with C3H mammary
tumors as defined by some syngeneic monoclonal antibodies. Cancer Res.,
in rats bearing 6-thioguanine-resistant variants of the 13762 mammary
15. Tsukagoshi, S., and Hashimoto, Y. Increased immunosensitivity in nitrogen
Nilsson, K. Natural killer cells kill tumour cells at a given stage of differen-
17. Ruco, L. P., and Meltzer, M. S. Macrophage activation for tumor cytotox-
icity: development of macrophage cytotoxic activity requires completion of
a sequence of short-lived intermediary reactions. J. Immunol., 121: 2035–
18. Habu, S., Fukui, H., Shimamura, K., Kasai, M., Nagai, Y., Okumura, K.,
and Tamaoki, N. In vivo effects of anti-asialo GM1. I. Reduction of NK
activity and enhancement of transplanted tumor growth in nude mice. J.
19. Akigawa, K. S., and Tokunaga, T. Appearance of a cell surface antigen
associated with the activation of peritoneal macrophages in mice. Microbial.
20. Henter, O., Hansson, M., Kiesel, R., and Wizgell, H. Role of non-
conventional natural killer cells in resistance against syngeneic tumour cells
21. Inaba, M., and Johnson, R. K. Decreased retention of actinomycin D as the
basis for cross-resistance in anthracycline-resistant sublines of P388 leuke-
Transplantability and Sensitivity to Natural Killer Cells of Aclarubicin-resistant Murine Lymphoma

Yoshikazu Sugimoto, Yoko Hirakawa, Nobuyuki Tanaka, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/46/11/5646

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.