Effectors Mechanisms of Human Monocyte-mediated Tumor Cytotoxicity in Vitro: Parameters of Induction of Cytotoxins from Peripheral Blood Monocytes Isolated by Counterflow Elutriation

Jim Klostergaard, Jim Turpin, and Gabriel Lopez-Berestein

ABSTRACT

Human peripheral blood monocytes, isolated in high purity by centrifugal counterflow elutriation from normal donors, were stimulated in vitro to release cell toxins, herein termed human monocyte toxin(s) (HMT). Bacterial lipopolysaccharide, the lipophilic 6-O-stearoyl derivative of muramyl dipeptide, and 4/3-phorbol-12-myristate-13-acetate served as effective induction signals. Induction involved a sequence of transcription, translation, and secretion, all necessary for HMT synthesis and release into the supernatant as determined by blocking of these functions with the drugs actinomycin D, cycloheximide, and monensin, respectively; HMT levels reached a peak within 4-6 h and thereafter declined. The levels of HMT produced varied considerably from donor to donor, one parameter causing this variability appeared to be the plateletapheresis history of the donor. Monocytes from donors subjected to pheresis for the first time were responsive to induction signals immediately after adherence and could not be brought to a higher state of priming for HMT production by further in vitro culture for up to 9 days, with or without recombinant human γ-interferon. In contrast, monocytes from donors who had recently undergone pheresis (up to 1 wk earlier) were poorly responsive initially to triggering with lipopolysaccharide; however, these cells could be brought to a highly primed state for HMT production by a combination of culture in vitro for several days and a subsequent 24-h exposure to recombinant γ-interferon (0.1-1.0 units/ml). These primed cells could then be effectively triggered by lipopolysaccharide to release HMT. HMT was found to be cytotoxic (cytostatic/cytolytic) for human and murine tumor cells in vitro.

INTRODUCTION

Human and rodent cells of the monocyte/macrophage lineage can be rendered tumoricidal in vitro by exposure to a variety or combination of signals in vivo and/or in vitro (1–9). Molecular characterization of the tumoricidal mechanism itself remains enigmatic, although evidence exists for a spectrum of pathways (10–13). Among these are the release by the activated effector cell of cytotoxic macromolecules (14–23). In the human such mediators have been reported by several laboratories (24–28).

Parameters that could have influenced these observations include the site of origin of the monocytes/macrophages, their route of isolation, and unintended exposure to trace levels of endotoxin. Other studies have indicated the functional integrity of monocytes isolated during routine plateletapheresis in a variety of assays, including tumor cell cytotoxicity (Refs. 29 and 30; Footnote 3). The current report uses these monocytes as an effector cell population to examine one possible mechanism of their tumoricidal capacity, the induced production and release of a cytotoxic macromolecule(s).

MATERIALS AND METHODS

Monocyte Isolation. Monocytes from normal donors undergoing routine platelethapheresis were isolated by counterflow elutriation as previously described (Refs. 30 and 31; Footnote 3). The final monocyte populations were >95% pure as determined by morphological characteristics and nonspecific esterase staining (32). These cells were allowed to adhere to plastic for 30 min at 37°C in the presence of FCS. After washing, the monocytes were recultured according to a number of different protocols (see below).

Target Cell Lines. The EMT-6 murine adenocarcinoma (BALB/c) was provided through the courtesy of Dr. A. Kallmann, Stanford University, Palo Alto, CA. The A-375 human melanoma was provided through the courtesy of Dr. I. J. Fisher, The University of Texas-M.D. Anderson Hospital and Tumor Institute at Houston, TX. The K562 human erythroleukemia was provided through the courtesy of D. C. L. Reading, The University of Texas-M. D. Anderson Hospital. The murine L-929, the HeLa human adenocarcinoma, and the WI-38 human lung fibroblast were from American Type Culture Collection (Rockville, MD). Normal mouse lung fibroblast cultures were established by mincing of aseptically removed lungs of 8-day-old mice. All cell lines were negative for microbial contamination and maintained on antibiotic-free Dulbecco’s modified Eagle’s medium: F-12 medium with 10% FCS.

Reagents. Endotoxin-screened RPMI-1640 tissue culture medium and pooled human AB serum were purchased from M. A. Bioproducts (Walkersville, MD); endotoxin-screened FCS was obtained from Hyclone Co. (Logan, UT); LAH and Ca2+, Mg2+-free phosphate-buffered saline were from Grand Island Biological Co. (Grand Island, NY). Ficoll was purchased from Pharmacia Laboratories (Piscataway, NJ), and Hypaque was from Winthrop Laboratories (New York, NY). Human albumin was purchased from Travenol Laboratories (Glendale, CA) as a 10% solution. All commercial media and solutions were purchased either as pyrogen free or prescreened to contain less than 0.25 ng of endotoxin per ml.

Received 3/12/85; revised 9/10/85; accepted 10/10/85.

1 Research sponsored by National Cancer Institute New Investigator Research Award 7R23 CA59575 (J. K.), NIH-BRSG RR5511-21 (BR-90) (J. K.), and NIH-BRSG5511 (G. L-B.).

2 To whom requests for reprints should be addressed.

3J. Turpin, Lopez-Berestein, G., and Hersh, E. M., manuscript, submitted for publication.

4 The abbreviations used are: FCS, fetal calf serum; HMT, human monocyte toxin; 6-HMT, human monocyte toxin, β-class; HuTNF, human tumor necrosis factor; LPS, lipopolysaccharide; MDP, N-acetylmuramyl-L-alanyl-diaminobutyryl-L-isoglutaminyl (muramyl dipeptide); PIC, polyoctoic:polycytoic acid; PMA, 4/3-phorbol-12-myristate-13-acetate; LAH, lactalbuminhydrolysate; MTT, [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]; IFN-γ, recombinant γ-interferon; IFN, interferon; cDNA, complementary DNA.

CANCER RESEARCH VOL. 46 FEBRUARY 1986

662

Downloaded from cancerres.aacrjournals.org on July 21, 2017. © 1986 American Association for Cancer Research.
with the Limulus Amebocyte Lysate assay (M. A. Bioproducts). Phenol-extracted endotoxin (Escherichia coli; serotype 0128:B12), PMA, calcium ionophore A23187, tuftsin, actinomycin D, and monensin were from Sigma (St. Louis, MO). PIC was from P. L. Biochemicals, Inc. (Milwaukee, WI). SMDP was provided through the courtesy of Dr. Gordon Jones, Syntex Laboratories, Palo Alto, CA. Human rIFN-γ was obtained from Genentech (South San Francisco, CA).

Microcytotoxicity Assays. The actinomycin D-treated L-929 target was used in a microcytotoxicity assay as previously described (23, 33); this was the standard rapid assay used throughout most of these studies, allowing evaluation of cytolytic effects after 18 h of treatment. For the data reported for this target in Table 2 of “Results,” the assay was conducted identically except that actinomycin D was omitted, and cytotoxicity was allowed to proceed for 72 h. Similarly, the EMT-6, HeLa, A375, K562, WI-38, and lung fibroblast targets were seeded at 2.5–10 x 10^4 cells/well in 100–200 μl of medium. After 24 h, toxin (β-HMT; see below) was added, and incubation was continued for an additional 18–72 h. Cytotoxicity in these cultures was evaluated after staining with neutral red or with MTT (34, 35).

Units/ml were calculated by linear regression as the reciprocal of the dilution that caused reduction of absorbance for either strain, to 50% of control untreated cultures.

Monocyte Stimulation for Toxin Production. For the standard preparation of HMT, the following protocol was used. Washed adherent peripheral blood monocytes, isolated as described above, were cultured for 4–6 h (Chart 2) at 37°C in medium Dulbecco’s modified Eagle’s medium: F-12 medium with 0.1% LAL and 100–500 ng of LPS per ml (Chart 1). Monocytes were plated at a density of 4–6 x 10^5/cm^2 (Chart 3), and release volume was 0.3–0.4 ml/cm^2. The supernatant was clarified by centrifugation and frozen at −20°C until further use.

For the studies of the effects of rIFN-γ on maturation for HMT production, monocytes were cultured in RPMI 1640 medium with 5% human AB serum in quadruplicate microwells (1 x 10^5 cells/well) with or without interferon (0.01–1.0 unit/ml) and for different time intervals, up to 168 h (Charts 5 to 7). After the appropriate incubation time, the monocytes were washed and then triggered with LPS (50 ng/ml) in a final volume of 100 μl for 4 h. The supernatants were frozen at −20°C until further use.

To determine appropriate signals and their optimal doses for toxin release, LPS, SMDP, tuftsin, and PIC at dose ranges from 3–1000 ng/ml were incubated with monocytes seeded at 1 x 10^5/2-cm^2 well for 4 h, and the supernatants were frozen as above. Similarly, PMA in the range from 0.03–1000 ng/ml; and the calcium ionophore A23187 in the range from 0.3–100 μM were used to attempt monocyte activation for toxin production. The levels of solvent introduced with PMA (ethanol) and A23187 (dimethyl sulfoxide) had no apparent effect on monocytes during the short-term culture (4 h) over the dose range used, as determined by morphology and solvent addition to LPS-triggered monocytes (data not shown).

To determine the effects of drugs perturbing transcription, translation, or secretion on monocyte production or release of HMT, actinomycin D, cycloheximide, and monensin, in the range from 0.03–10 μg/ml, were incubated with monocytes for 30 min prior to LPS triggering. Supernatants were harvested, dialyzed overnight against −1000 volumes of phosphate-buffered saline and frozen until further use.

For kinetic studies, monocytes were triggered with LPS or SMDP (100 ng/ml), and samples from replicate wells were harvested at various time points and frozen until assay.

Partial Purification of Human Monocyte Supernatants. The isolation and characterization of toxins from the supernatants produced as described herein are the subject of another report and are reported in detail therein. Briefly, the supernatants were concentrated on a YM-10 membrane (Amicon Corporation, Danvers, MA), and the concentrates were subjected to molecular sieving on Sephacryl S-200 (Pharmacia, Piscataway, NJ). The fractions were assayed for lytic activity on actinomycin D-treated L-929 or EMT-6 cells. Those fractions corresponding to the β-peak (M, 60,000–70,000) were pooled, filter sterilized, and stored at 4°C. This preparation, termed β-HMT, was used in the experiments reported in Chart 8 and Table 2.

RESULTS

Tumor Cell Cytotoxicity of in Vitro Activated Human Monocytes Isolated by Counterflow Elutriation of Plateletapheresis Residues from Normal Donors. The functional integrity of human monocytes, isolated by counterflow elutriation from incidental samples obtained during routine platelethapheresis of normal donors, in tumor cell cytotoxicity has previously been established (29, 30). The human targets used in these studies included a kidney carcinoma (CAKI) and breast adenocarcinoma (435-S); effector:target ratios were usually 10:1, and the duration of the cytotoxicity assays was 48–72 h.

In initial experiments, we used a modification of the photometric plaque assay of Fisch and Gifford (33), using these human monocytes as effector cells. In brief, actinomycin D-treated L-929 target cells were established as described in "Materials and Methods." After 1 h of drug treatment, the cultures were washed, and a range of monocytes was added (1–30 x 10^4 monocytes/well). This procedure established a range of effector:target ratios of approximately 1:30–1:1. To one series of cultures, LPS (100 ng/ml) was added. After 18 h of incubation, cytotoxicity was evident microscopically, even with the lower effector:target ratios and was augmented with LPS-treated monocytes (data not shown). L-929 targets that had not been actinomycin D treated were also affected at 18 h but required higher effector cell numbers.

These observations, which indicated the high sensitivity of the actinomycin D-treated L-929 cell to the direct cytotoxic effects of activated human monocytes in a rapid assay, provided a significant rationale for the use of this target cell for the studies described below.

Attempts to Induce HMT with Various Triggering Agents In Vitro. Monocyte monolayers established at 1 x 10^5 cells/2-cm^2 well in 24-well plates were treated with various triggering agents over a broad dose range: LPS, SMDP, tuftsin, and PIC were used at 3–1000 ng/ml; PMA, at 0.03–1000 ng/ml; and A23187, at 0.3–100 μM. Control wells included medium alone. After 4 h, the supernatants were collected, and the HMT present was determined by bioassay. The results from several experiments were pooled; the ratio (mean ± SE) of lytic activity in test supernatants compared to that spontaneously released (medium alone overlaying monocytes) is expressed as a stimulation index in Fig. 1.

LPS, SMDP, and PMA all served as effective triggers for HMT release. LPS at levels as low as 3 ng/ml appeared to exceed a threshold for triggering; this threshold was achieved only with higher levels (~100 ng/ml) of SMDP. PMA demonstrated a biphasic effect on HMT production; the optimum dose was in the 100-pg/ml range, whereas higher levels (3–100 ng/ml) slightly suppressed spontaneous HMT release. In contrast, the ionophore A23187, tuftsin, and PIC were ineffective triggers in the dose range used.

Kinetics of HMT Production. Monocytes established as above in 24-well plates were triggered with LPS or SMDP (100 ng/ml).
HMT PRODUCTION BY HUMAN MONOCYTES

Fig. 1. Dose response of various triggering agents on HMT production by peripheral blood monocytes. LPS, SMDP, PMA, A23187, tuftsin, and PIC were incubated with freshly isolated monocytes, and the resulting lytic activity appearing in the supernatant 4 h later was determined following dialysis. The lytic activity in each sample was normalized to the level released spontaneously, and the ratio, or stimulation index (mean), is shown. Bars, SE.

Samples harvested at various times were frozen and then assayed for HMT activity at one time on L-929 cells to eliminate variability due to fluctuations in the sensitivity of the assay. Typical results from three experiments are shown in Fig. 2.

HMT levels climbed rapidly after monocytes were exposed to the triggers, reaching a peak between 3 and 6 h. The levels declined thereafter, such that by 25 h only ~10% of the original activity remained. Only part of this decline can be attributed to slight instability to storage at 37°C (data not shown); this suggests HMT degradation occurs in the continued presence of the monocyte.

Effect of Monocyte Density on Production of HMT. Monocytes were seeded in 24-well plates at different densities, the highest being ~4 x 10^5/cm². The wells were washed after the adherence step, and medium or medium with endotoxin was replaced; after 3 h, the supernatants were harvested and assayed for lytic activity on L-929 cells. The units (mean ± SE) compared with density are shown in Fig. 3 for two experiments. HMT production could be detected spontaneously from as few as 1 x 10^5 cells/cm². Over the range tested, the activity released was virtually proportional to monocyte density. The optimal level of production was achieved with the highest level of monocytes seeded, 4 x 10^5 cells/cm². At this level, LPS-triggered monocytes released approximately 6-fold higher levels of HMT than occurred spontaneously. These results indicated that, on the basis of surface area, optimal conditions for HMT production required essentially confluent monocyte monolayers (4–6 x 10^5/cm²).

Role of Adherence on Monocyte Production of HMT. In a single experiment, monocytes at a density of 1 x 10^6/ml were seeded in a 100-mm polystyrene dish or a 15-ml polypropylene tube. After 1 h the polystyrene dish was washed free of growth medium, and the medium was replaced with medium containing...
HMT PRODUCTION BY HUMAN MONOCYTES

LAH. Similarly, the polypropylene tubes were subjected to centrifugation to pellet the monocytes, and the monocytes were resuspended in medium containing LAH. After triggering with LPS, HMT release was allowed to occur for 4 h, at which time the supernatants were collected from either production source, centrifuged to clarify free of cells, and subjected to bioassay. The bioassay revealed that there was no significant difference between the levels of HMT produced by monocytes adherent to polystyrene and monocytes cultured on polystyrene surfaces (data not shown). Thus the poor adherence which monocytes express on a polystyrene surface does not affect their ability to produce HMT in comparison to monocytes which are strongly adherent to polystyrene.

Requirement for Transcription, Translation, and Secretion following LPS Triggering of Monocytes for HMT Production/Release. Monocytes were seeded in 24-well plates (1 x 10⁶ cells/well) and were washed after adherence. Actinomycin D, cycloheximide, or monensin was added in medium over a dose range of 0.03-10 µg/ml. After a 30-min incubation, LPS (100 ng/ml) was added to the cultures. The resulting HMT in supernatants harvested 4 h later and then dialyzed was quantitated by bioassay on L-929 cells. The units of lytic activity in test cultures, compared to a control LPS-triggered, non-drug-treated culture, were expressed as a percentage, and the results from several experiments were plotted in Fig. 4.

At the lowest level tested (30 ng/ml), actinomycin D caused >50% inhibition of HMT production. As expected from this result, cycloheximide was also found to inhibit production (50% inhibition at >200 ng/ml). Secretory processes perturbed by monensin also appeared to be necessary for HMT appearance in monocyte supernatants, since this drug caused 50% inhibition at around 300 ng/ml. Interestingly drug doses from 1.5-2.5 log 10 higher than the 50% inhibitory dose still allowed HMT production/release at 10-20% of control levels.

HMT Levels Produced by LPS-triggered Monocytes from Randomly Selected Normal Donors. Monocytes obtained from randomly selected normal donors undergoing routine plateletpheresis over approximately 18 mo were used to produce HMT by the standard protocol described above using LPS as the trigger. The supernatant samples were stored frozen at -20°C until bioassay could be conducted on all accumulated samples at one time to eliminate assay-to-assay variability. The results are shown in Table 1 as units of lytic activity per ml (mean ± SE).

The supernatants demonstrated HMT levels that varied over two orders of magnitude. No alteration in technique reasonably accounted for this striking variability. One basis for this variability was further explored (see below).

Attempts to Mature Monocytes from Initially Pheresed Normal Donors for HMT Production by Further In Vitro Culture with rIFN-γ. In two separate experiments, monolayers of monocytes from normal donors with no known history of pheresis were established in microwells. Some cultures were stimulated immediately with LPS (50 ng/ml) for 4 h after adherence; other cultures were incubated in serum-containing medium with or without rIFN-γ (0.01-1.0 unit/ml) for 1, 5, or 9 days. These sets of cultures were then washed, and triggering of HMT release by LPS was attempted. The supernatants obtained from all cultures were frozen at -20°C until bioassay on one set of L-929 targets. The units of lytic activity (mean ± SE) per ml for each sample are shown in Fig. 5.

Monocytes, when initially isolated, released HMT spontaneously, and even higher levels could be achieved in response to LPS triggering. However, monocytes that had been further cultured in vitro for 1, 5, or 9 days alone or with any level of rIFN-γ tested no longer released significant levels of HMT either spontaneously or after exposure to LPS. Monocytes cultured under these conditions appeared to be intact morphologically and demonstrated high viability (>95%; data not shown).

Attempts to Mature Monocytes from Recently Pheresed Normal Donors for HMT Production by Further In Vitro Culture with rIFN-γ. In two separate experiments, monolayers of monocytes isolated from plateletpheresis residues from normal donors who had undergone plateletpheresis up to 1 wk earlier were established in microwells. Some cultures were stimulated immediately with LPS (50 ng/ml) for 4 h after adherence; other cultures were incubated for up to 168 h in serum-containing
medium with or without rIFN-γ (0.1 or 1.0 unit/ml). IFN treatment was confined to the last 24-h interval immediately preceding washing and LPS triggering in the results shown in Fig. 6. The supernatants were harvested and frozen at −20°C until bioassay as above. The units per ml of lytic activity for each sample are shown.

In contrast to the monocytes obtained from donors who were initially pheresed, monocytes from donors with a recent pheresis history were initially incapable of HMT release, even when triggering was attempted with LPS. However, rIFN-γ (1.0 unit/ml) showed a marked ability to prime the monocytes for LPS triggering when cultured for up to 5 days; this ability was transient and declined thereafter. The levels of HMT achieved with monocytes from this type of donor and with rIFN-γ maturation were consistently higher (2500–5500 units/ml) than those observed when using monocytes from initially pheresed donors (400–1200 units/ml) (Fig. 5; Table 1).

Monocytes cultured for up to 188 h in vitro were incubated for various times with rIFN-γ up to the time of washing and LPS (50 ng/ml) triggering. Supernatants were collected after 4 h of triggering and frozen at −20°C until assay on one set of L-929 cells. The units per ml for monocyte cultures incubated in vitro for a

![Graph](image)

Fig. 6. Attempts to mature monocytes from recently pheresed normal donors by in vitro culture. Monocytes were cultured essentially as in the experiment shown in Fig. 5, except that total culture time was a maximum of 188 h, and rIFN-γ treatment (1.0 unit/ml) was confined to the last 24 h. HMT lytic activity in supernatants following a 4-h release period is shown (mean). Bars, SE.

| Table 2 |
|---------------------|--------------|
| **Cytotoxic effects of HMT on allogeneic and xenogeneic target cells in vitro** |
Target	**Lytic activity (units/ml)**
L-929	93 ± 21
L-929 (actinomycin D)	849 ± 128
EMT-6	<15
K562	22 ± 4
A375	26 ± 5
HeLa	16 ± 3
WI-38	<10
Mouse lung fibroblasts	<15
a Seventy-two-h assay, MTT stain.	
b Mean ± SE.	
c Eighteen-h assay, neutral red stain.	
d Forty-eight-h assay, neutral red stain.	

total of 120 h are shown in Fig. 7.

The optimal time of rIFN-γ treatment was the 24-h interval just before LPS triggering; with somewhat longer exposure, the monocytes become less responsive to LPS, and by 120 h, the effect of rIFN-γ was completely reduced to a pretreatment state of responsiveness.

Initial Characterization of Anticellular Effects of β-HMT. The principal species of HMT, the β-class, was isolated as described (see "Materials and Methods" and Footnote 5). A single preparation of β-HMT was used in several cytotoxicity assays with a number of target cells (Table 2): L-929; L-929 with actinomycin D treatment; EMT-6; A375; K562; HeLa; WI-38, and normal lung fibroblasts. These targets showed a spectrum of sensitivities to β-HMT; the lung fibroblasts, WI-38, and EMT-6 were refractory, while the human tumor targets were intermediate in sensitivity. The effect on K562 appeared morphologically and by neutral red staining to be primarily cytostatic. The L-929 target in a 72-h assay appeared to be of highest sensitivity; when treated with actinomycin D for measurement of cytosis in the standard 18-h assay, its sensitivity increased by about one order of magnitude.

The differential sensitivity of the A375 and L-929 targets is
The cytotoxic effects of HMT are manifest on allogeneic and xenogeneic monocytes with a strict control for endotoxin contamination, these effector cells can be rapidly promoted to demonstrate tumoricidal capacity, with release of a lytic macromolecule. We would suggest that this characteristic may reflect the responsiveness to triggers for activation of monocytes in vivo. The observation that monocytes from donors having undergone recent pheresis show poor initial LPS responsiveness, which may, however, be markedly enhanced after in vitro cultivation with rIFN-γ, is remarkable. Prior manipulation presumably causes demargination or more rapid emigration from the bone marrow of cells from the monocyte lineage. A direct interpretation is that the immature monocytes lack priming in vivo to become LPS triggered for tumoricidal capacity, which can be overcome by rIFN-γ in vitro. Indeed, the presence of subpopulations of immature monocytes defined by centrifugal elutriation has been demonstrated for oxidative burst expression. However, why a similar maturation was not observed with monocytes from donors who initially underwent pheresis is unclear, as these monocytes should have a significant immature subpopulation that may become primed in vitro. This finding raises the possibility that the mature populations are regulating the response of the immature monocytes to priming signals. Furthermore, aside from the pheresis history of the donor, there are certainly additional factors that influence the initial LPS responsiveness of the monocyte populations; their existence is suggested by the low correlation coefficient (<0.2) that we have observed between the lytic activity released by these LPS-triggered monocytes and either the time since last pheresis or the total number of prior pheresis donations (data not shown); this relationship was established for donors evaluated over 18 m.

In a subsequent report, we present biochemical and functional characterization of HMTs. Two activities in the monocyte supernatants appear to constitute the lytic species: the larger form (M, 100,000–120,000), termed α, is present in lower amounts than the predominant β-form (M, 60,000–70,000). β-HMT does not appear to be a neutral protease or arginase.

The β-HMT appears to be related to, but distinct from, HuTNF by a number of criteria. The first, which was previously mentioned, is the molecular weight as determined by molecular exclusion chromatography on Sephacryl S-200 or on HPLC TSK sieving columns; β-HMT migrates as a protein with a molecular weight of 60,000–70,000. In contrast, the recombinant HuTNF migrates as a dimer of a M, 17,000 peptide, at M, 34,000, in physiological buffers. The second molecular distinction between β-HMT and HuTNF factor is isoelectric point. In our hands, β-HMT has a pI of 5.8 as determined by chromatofocusing, whereas recombinant HuTNF has a pI of about 5.3. Additional evidence for the nonidentity for the two forms is obtained from serological characterization, using a rabbit antiserum raised against recombinant HuTNF. We have determined that, although β-HMT is neutralized by this antiserum, much higher levels of this antiserum are required to achieve full neutralization, as compared to those levels required to block biological activity of the HuTNF factor itself. One interpretation is that there are both common and distinct antigenic determinants between β-HMT and HuTNF. Another interpretation is that there are no identical determinants, but rather only slightly altered determinants for which this antiserum has lower affinity. Finally, using this antiserum against recombinant HuTNF, immunoprecipitation of HuTNF reveals a single M, 17,000 peptide, in agreement with all other evidence. In contrast, a single M, 60,000–70,000 peptide

DISCUSSION

Macrophages are a focus of attention as an appropriate arm of host response that might be manipulated for the immunotherapy of neoplastic disease. This attention is warranted because of the ubiquitous distribution of these cells in tissues, and because of their demonstrated ability in vitro to mediate a lytic mechanism preferentially manifested on tumor cells (2, 36–39). More recently their activation by targeted agents in vivo has led to the eradication of metastatic foci in animal model systems (40–42).

Characterization of the tumoricidal mechanism has been conducted by a number of laboratories, and a striking scope of pathways has been attributed to the effector cell. Although there is widespread agreement that, under most circumstances, the lytic mechanism is facilitated by contact between the macrophage and the target cell, in many systems this has been shown not to be obligatory.

The current report describes initial studies of one of the biochemical consequences of triggering highly purified human monocytes to a tumoricidal state: the release of a cell toxin, herein termed HMT. HMT can be triggered with low levels of LPS, SMKP, or PMA (Fig. 1), which initiates a rapid cascade of events (Fig. 2) involving transcription, translation, and secretion, all necessary for the appearance of HMT in the supernatant (Fig. 4). The cytotoxic effects of HMT are manifest on allogeneic and xenogeneic anchor-age-dependent and -independent tumor targets (Fig. 8; Table 2).

Our studies clearly showed that, under these conditions of isolation of highly purified, functionally intact monocytes, with strict control for endotoxin contamination, these effector cells...
is precipitated by this antisera from β-HMT. Further isolation, purification, and characterization of β-HMT are under way in our laboratory.

In the human system, reports from several other laboratories have described macromolecular cytoxins derived from human monocytes and macrophages. Reed and Lucas (24) have described a M, 45,000 toxin that arose apparently spontaneously after adherence of peripheral blood mononuclear cells; LPS triggering was not obligatory in this system, although given the very low threshold of release in the current report (Fig. 1), it is not clear that a role for trace endotoxin contamination can be excluded. The kinetics of release in their system is very similar to ours, in that peak levels of toxin were achieved in 4–8 h, followed by a decline; however, they demonstrated that reinduction with LPS was possible, whereas, in our hands, it was only minimally effective (data not shown).

Matthews demonstrated that adherent peripheral blood monocytes could release a cytotoxin after 20 h of incubation with levels of endotoxin from 100 ng to 10 μg/ml (25). In a subsequent report (20), MDP at up to 100 μg/ml was found to be an ineffective inducer, whereas, in our hands, the lipopolipidic activator SMIPD at 30–100 ng/ml is thought to be as competent as LPS (Fig. 1); furthermore, we found that levels of <1 ng/ml to be a potent trigger, and levels up to 100 ng/ml to be ineffective, whereas in the report of Matthews, levels of 10–10² ng/ml were optimal. The appearance of this factor was delayed after triggering compared to that observed by Reed and Lucas (24) and to our findings (Fig. 2). In agreement with results shown in Chart 4, Matthews (25) demonstrated a requirement for transcription and translation after LPS triggering for production of the toxin. This toxin had an apparent molecular weight of 34,000 by molecular sieving on Ultrogel AcA 54.

In contrast to the results of Reed and Lucas (24) and Matthews (25), Hammerstrom (26) found that peripheral blood monocytes from Bacillus Calmette-Guerin-vaccinated donors required up to 3–5 days of total in vitro incubation and 24 h of incubation with crude human lymphokine preparations to release cytostatic factors. Previous studies by Hammerstrom (4–6) had shown that this protocol produced competent effector cells for direct tumor cell cytotoxicity. Two cytostatic factors were characterized and partially purified by Nissen-Meyer and Hammerstrom (43) and found to have molecular weights of 40,000 and 55,000. Whether the Bacillus Calmette-Guerin-vaccinated status of the donors in these studies of Hammerstrom was the cause of the lack of spontaneous reactivity, or whether could be attributed to control of trace endotoxin contamination is unclear. In other respects, such as the kinetics of LPS triggering (Fig. 2), the lack of a serum requirement during triggering, and the observation that β-HMT appeared to be primarily cytostatic on the K562 target (Table 2), our results were similar.

Cameron reported that cytotoxic activity could be obtained spontaneously from peripheral blood monocytes cultured in vitro for 5 days (27). This factor(s) was shown to enhance host survival in animal tumor systems. Little molecular characterization was conducted, however.

Sone, et al. (28) found that human alveolar macrophages could be triggered with LPS or MDP to release a cytolytic factor. The ability of alveolar macrophages to release the factor persisted for up to 48 h, which is longer than we observed for monocytes in the current study (Fig. 5). As with the studies of Cameron (27), initial biochemical characterization of the factor is still needed.

A number of human cell lines have been exploited as models of monocytes/macrophages (44–48). Some of these have been found to release cytotoxic macromolecules following appropriate triggering. For example, Gifford, et al. (47) demonstrated that KG-1, HL-60, ML-2, and ML-3 lines could be induced with PMA to release cytotoxins; the principal species from the ML-2 line was found to have a molecular weight of ~40,000. Armstrong, et al. (48) used the THP-1 line which, following exposure to PMA, elaborated three cytotoxic species: α (M, 100,000–140,000); β (M, 60,000–70,000); and γ (M, ~10,000). Pennica, et al. (49) reported the cloning of cDNA made from mRNA obtained from PMA-treated HL-60 cells. The cDNA sequence corresponded to a M, ~17,000 peptide. Northern hybridization analysis revealed only a single RNA species from either induced HL-60 cells or triggered peripheral blood monocytes. Thus it would appear that either there are additional mRNA species, not detected with this probe, which give rise to the diversity of molecular weight noted for these macrophage toxins from numerous laboratories, or that all of these are derived by aggregation of a single gene product.

The possible role of HMT in human monocyte-mediated tumoricidal reactions remains to be defined. One goal is to develop specific immunoglobulin reagents reactive with both α- and β-HMT, and to use these probes in blocking of tumor cytolysis by the activated monocyte and in immunoelectron microscopy to examine the production, secretion, delivery, and actual site of action in the target of these toxins.

Finally, because of the tumoricidal effects of HMT itself, its value as a biological response modifying agent should be considered.

REFERENCES

Effector Mechanisms of Human Monocyte-mediated Tumor Cytotoxicity *in Vitro*: Parameters of Induction of Cytotoxins from Peripheral Blood Monocytes Isolated by Counterflow Elutriation

Jim Klostergaard, Jim Turpin and Gabriel Lopez-Berestein

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/46/2/662

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.