Analysis of a Human Tumor-associated Glycoprotein (TAG-72) Identified by Monoclonal Antibody B72.3

Virginia G. Johnson, Jeffrey Schlom, Andrew J. Paterson, Jeffrey Bennett, John L. Magnani, and David Colcher

Laboratory of Tumor Immunology and Biology, National Cancer Institute [V. G. J., J. S., A. J. P., J. B., D. C.], and National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases [J. L. M.], NIH, Bethesda, Maryland 20892

ABSTRACT

Monoclonal antibody B72.3 binds a high-molecular-weight tumor-associated glycoprotein identified as TAG-72. This study reports the partial purification and characterization of TAG-72 from a xenograft of a human carcinoma cell line, LS-174T, which expresses high levels of this antigen. The tumor homogenate was initially fractionated by Sepharose CL-4B chromatography. The high-molecular-weight TAG-72, found in the exclusion volume, was then subjected to two sequential passages through B72.3 affinity affinity columns. At each step of the procedure, TAG-72 content was quantitated using a competition radioimmunoassay, and the degree of purification was expressed as the ratio of antigen in units to total protein. The three-step procedure produced a purification of TAG-72 with minimal contamination by other proteins as shown by polyacrylamide gel electrophoresis, followed by staining with Coomassie Blue or periodic acid/Schiff reagent. The density of affinity-purified TAG-72, as determined by cesium chloride gradient ultracentrifugation, was found to be 1.45 g/ml. This density determination, together with the high-molecular weight of TAG-72, its resistance to Chondroitinase digestion, the presence of blood group-related oligosaccharides, and sensitivity to shearing into lower-molecular-weight forms suggest that TAG-72 is a mucin-like molecule.

INTRODUCTION

Monoclonal antibody B72.3 was generated using a membrane-enriched fraction from a mammary carcinoma metastasis (1). Immunoperoxidase studies have demonstrated that B72.3 reacts with approximately 50% of breast carcinomas (2) and to greater than 80% of colon carcinomas (3) but shows no significant reactivity with normal adult liver, spleen, heart, breast, uterus, bone marrow, colon, stomach, salivary gland, lymph node, or kidney (2, 3). Monoclonal antibody B72.3 is useful in RIAs to detect the presence of the antigen in the serum of patients with carcinoma xenografts (4, 5). Monoclonal antibody B72.3 has also been used in immunocytochemical studies to detect occult tumor cells in cytological preparations of effusions (6, 7). Clinical trials are now ongoing using B72.3 to detect colon carcinoma lesions in situ. The antigen detected by B72.3 is a high-molecular-weight, tumor-associated glycoprotein designated as TAG-72 (8).

Mucins are ambiguously classified as glycoproteins of high molecular weight which contain large amounts of carbohydrate joined in O-glycosidic linkages to serine and threonine residues (9, 10). Biologically, mucins are usually viscous secretions whose main function is lubrication and protection (11). Important changes have been found to take place in mucins and heavily glycosylated glycoproteins during transformation (12–14). Many of the tumor-associated antigens identified by monoclonal antibodies have been characterized as mucins. For example, monoclonal antibody 19-9 has been used to detect a mucin in the serum of gastrointestinal and pancreatic cancer patients (15).

The purpose of the present study was to purify and characterize the TAG-72 molecule(s). The breast tumor metastasis used to generate monoclonal antibody B72.3 provided a rich source of TAG-72, but limited availability necessitated the identification of an alternate and reproducible source for TAG-72 purification studies. We have recently shown that, although B72.3 reacts with a high percentage of breast and colon carcinomas (2, 3), it reacts with only 1 of 18 colon carcinoma cell lines and 1 of 25 breast carcinoma cell lines (8). LS-174T, a colon carcinoma cell line (20), expresses low levels of TAG-72 when grown in culture. However, the three-dimensional spatial configuration of the carcinoma cell line has been shown to be important for the expression of TAG-72 (8). Consequently, the LS-174T cells, when grown as a xenograft in athymic mice, exhibit a 100-fold increase in antigen expression to levels comparable to that seen in metastatic tumor masses from patients (8). The immunohistochemical evaluation of LS-174T xenografts identifies it as a well-differentiated adenocarcinoma demonstrating monoclonal antibody B72.3 reactivity with both extracellular mucin and intracytoplasmic antigen. This antigenic distribution is similar to that found in mucinous adenocarcinomas of the human colon. Because of the ease of production and reproducibility of this tumor, LS-174T xenografts were chosen as the source of TAG-72 for this study.

MATERIALS AND METHODS

Antibody Preparation. Monoclonal antibody B72.3 was generated using a membrane-enriched fraction of cells from a mammary carcinoma metastasis as described elsewhere (1). The antibody was purified from ascitic fluid by ammonium sulfate precipitation followed by ion-exchange
CHROMATOGRAPHY (2, 4).
B72.3 (lgG1) and goat anti-mouse IgG heavy chain were labeled with Na125I using Iodogen (Pierce, Rockford, IL) as described previously (5). MOPC-21, a myeloma IgG1 (Litton Bionetics, Inc., Rockville, MD) was used as a control immunoglobulin to demonstrate the specificity of B72.3 antibody binding.

Tumor Preparation. LS-174T, a human colon adenocarcinoma cell line (20), was obtained from the American Type Culture Collection and grown in Eagle's minimal essential medium with nonessential amino acids, supplemented with 10% fetal calf serum and gentamicin (50 /ig/ml). Cells were removed from culture flasks with 0.1% trypsin containing 0.5 mM EDTA and washed twice with culture medium without serum.

Four-week-old female, athymic mice were obtained from Charles River (Kingston, NY). Mice were inoculated s.c. with 1 x 10⁶ cells in 0.1 ml of culture medium. Tumors were harvested when they reached approximately 1 cm in diameter (15-20 days after implantation), quick frozen in liquid nitrogen, and stored at -70°C. Larger tumors were not used due to necrosis.

A breast tumor metastasis to the liver, which was used as the immunogen for the production of B72.3, was also used in this study.

Tumor Extraction. Tumor extracts were prepared by three different methods. (a) The first method used nitrogen decompres- sion and sonication. Tumors were finely minced in 3 volumes (w/v) of TBS containing 0.1 M phenylmethylsulfonyl fluoride, 1.0 mM -aminocaproic acid, and 1% aprotinin (0.2 trypsin inhibitor units/ml). The tumor was homogenized for 2 min (Silverson homogenizer, top speed) and then subjected to nitrogen pressure at 1000 psi (Parr Instrument Co., Moline, IL). The homogenate was centrifuged for 15 min at 1000 × g, and the resultant supernatant was sonicated (Heat Systems Ultrasonics, Plainview, NY) for 1 min at the maximum setting. After sonication, the homogenate was further clarified by centrifugation at 10,000 × g for 15 min, and the supernatant was used for further studies. (b) The second method was Omni-mix homogenization. Tumors, ranging in size from 3-5 g, were minced in TBS containing protease inhibitors as described above and homogenized using the Sorvall Omni-mixer (Sorvall Instruments, Wilmington, DE) at maximum speed for 1 min at 4°C. This was followed by centrifugation at 1000 × g for 15 min. The supernatant was further clarified by centrifugation at 10,000 × g for 15 min, and the supernatant was used for further studies. (c) Disaggregation with frosted glass slides was the third method used to prepare tumor extracts. LS-174T tumors are characterized by large pools of extracellular antigen as shown by immunoperoxidase analysis. In an attempt to remove this extracellular antigen by gentle extraction procedures, tumors were disaggregated between frosted glass microscope slides, and the resulting cellular suspension was washed in TBS. The majority of the cells were left intact by this method, and these intact cells, as well as cellular debris, were removed by centrifugation as described above, leaving the extracellular antigen in the supernatant.

Protein concentration was determined by the method of Lowry et al. (21) using BSA as a standard. Tumor extracts were aliquoted and stored at -20°C.

Antigen Purification. LS-174T tumors were homogenized using the Omni-mixer. All steps of the purification were carried out at 4°C. The tumor homogenate (75 mg) was resuspended in 10 ml of PBS and loaded onto a Sepharose CL-4B column (5.5 x 25 cm), previously equilibrated in PBS. The column was eluted with PBS, and 7.5-ml fractions were collected. Absorbance at 280 nm was determined, and an aliquot from each fraction was dialyzed 1:100 in H₂O for use in a SPRIA.

Fractions containing TAG-72 were pooled, concentrated using Aquacide II (Calbiochem, San Diego, CA), and diazylated against TBS. The pooled peak was then loaded onto a B72.2 affinity column prepared using the 1,1'-carbonyldimidazole-activated affinity matrix Reacti-Gel HW-65F (Pierce, Rockford, IL). One hundred ml of packed gel were coupled with 200 mg of B72.2 according to the method of Hearn et al. (22). The column was washed with TBS, and the bound antigen was eluted with 3 M NaI in TBS. Fractions (5.0 ml) were collected, and absorbance at 280 nm was determined. A small aliquot from each fraction was removed and diluted 1:100 in H₂O, and the presence of antigen was determined by SPRIA as described below. The fractions containing the antigen were pooled, diazylated extensively in TBS to remove NaI, concentrated by ultracentrifugation, and dialyzed against TBS. The pooled, bound peak from the first affinity column was then loaded onto a second B72.3 affinity column consisting of 20 ml of HW 65F affinity matrix coupled to 40 mg of B72.3. Chromatography was carried out as described above.

Aliquots were saved at each step of the purification procedure, and the protein concentration was determined by the method of Lowry et al. (21). Quantitation of the antigen at each step was done using a competition radioimmunoassay.

SPRIA. Samples to be tested in a SPRIA (50 /il) were dried in 96-well polyvinyl chloride microtiter plates. When appropriate, antigen-coated wells were incubated with modifying agents such as 0.1 M NaOH (50 /il) for 30 min at room temperature in the dark. To minimize nonspecific protein absorption, microtiter wells were treated with 100 /il of 5% BSA (w/v) in PBS and incubated for 1 h at 37°C. The BSA was removed, and 125I-labeled B72.3 was added (75,000 cpm in 25 /il). After an overnight incubation at 4°C, unbound antibody was removed by washing with 1% BSA (w/v) in PBS. The bound 125I-B72.3 was detected by cutting individual wells from the plate and measuring the radioactivity in a gamma counter.

Solid-phase radioimmunoassay and immunostaining of thin-layer chromatograms of glycoproteins were performed as previously described (23).

Competition Radioimmunoassay. The amount of TAG-72 was quantified using a competition RIA. Dilutions of samples to be tested, as well as those for the standard curve, were incubated with 100 /il of 125I-B72.3 (100,000 cpm) in 250-µl polyethylene microtest tubes (Binkman Instruments, Inc., Westbury, NY) at 4°C overnight. The tubes were centrifuged at 8000 × g for 5 min, and 50 /il of the supernatant were transferred in triplicate to 96-well polyvinyl chloride microtiter plates that were precoated with 5 µg of LS-174T tumor extract per well. Following an overnight incubation at 4°C, the plates were washed with 1% BSA (w/v) in PBS, and the radioactivity was counted. Competition curves were plotted for each sample tested as the percentage of bound radioactivity as a function of antigen competitor protein concentration. The linear portion of the competition curve was compared to a standard extract containing TAG-72. This standard is based on the extract of the breast tumor metastasis that was used to generate the B72.3 monoclonal antibody. One unit of TAG-72 is defined as the amount of TAG-72 found in 1 µg of the breast tumor metastasis extract.

Double Determinant Assay. Specific carbohydrate sequences were detected on TAG-72 by monoclonal antibodies using a double determinant assay similar to that previously described (15). Monoclonal antibody B27.3 (50 µg/ml) in PBS containing 0.1% NaOH was added to the wells of a microtiter plate and incubated overnight at 4°C. The wells were washed and incubated with TBS containing 1% BSA and 0.1% NaOH at pH 8.0 for 2 h at 22°C. This was followed by an incubation under similar conditions with affinity-purified TAG-72 diluted in Tris/BSA buffer. The material that specifically bound to the wells coated with B72.3 was assayed for binding by monoclonal antibodies specific for carbohydrate sequences by the solid-phase radioimmunoassay described above. The second monoclonal antibodies used in this assay are specific for blood group oligosaccharides and are all of the IgM isotype. Antibody AH6-252 binds Le⁰ oligosaccharides (Chembiomed, Edmonton, Alberta, Canada); antibody 10c17 binds Le⁺ oligosaccharide (24); F-8 binds Le⁰ oligosaccharide (25); anti-A antibody binds blood type A oligosaccharides (Monocorb, Inc., Lund, Sweden); anti-B antibody binds blood type B oligosaccharides (Monocorb, Inc.); antibody 102 binds blood type H 2 oligosaccharides (26); and antibody CSLEX1 is specific for sialylated Le⁰ oligosaccharides (27). Binding of the second antibody was detected using 125I-labeled goat anti-mouse IgM antibody. Monoclonal antibody 19-9 (15) was also used to detect the presence of sialylated Le⁰ oligosaccharide. Since antibody 19-9 is an IgG1, a direct binding assay, as
HUMAN TUMOR-ASSOCIATED GLYCOPEPTIDE (TAG-72)

The antigen was dissolved in a concentration of 5 units/ml. The substrate (50 ng) was incubated with heating TAG-72 at 100°C for 2 min did not significantly reduce the antigenicity by Western blotting techniques. A sample was also heat inactivated at 37°C with constant rocking. After incubation with each antibody, the nitrocellulose paper was then incubated in a Beckman SW 50.1 rotor at 150,000 x g for 72 h at 5°C. Fractions (0.2 ml) were collected, the density was determined in the buffer described above. Incubation of each antibody was for 1.5 h at 37°C with constant rocking. After incubation with each antibody, the nitrocellulose paper was extensively washed with 50 mM Tris-HCl (pH 7.2):150 mM NaCl:5 mM EDTA:1% BSA (w/v):0.5% Triton X-100 (w/v):0.1% SDS (w/v). The Western blots were air dried and exposed to Kodak XAR X-ray film at -70°C for 4–16 h using intensifying screens.

Density Gradient Ultracentrifugation. Ultracentrifugation of affinity-purified TAG-72 and LS-174T tumor extract was carried out in 5 ml of cesium chloride isopycnic density gradients. The antigen was dissolved in a CsCl solution with a starting density of 1.42 g/ml, and the gradients were formed by centrifugation in a Beckman SW 50.1 rotor at 150,000 x g for 72 h at 5°C. Fractions (0.2 ml) were collected, the density was determined by refractive index, and an aliquot was diluted 1:10 for SPRIA to localize the antigen.

Chondroitinase Digestion. Affinity-purified TAG-72 and LS-174T tumor extract were dialyzed overnight in Tris-enriched buffer (250 mM Tris-HCl:176 mM NaCl2H2O2:250 mM NaCl, pH 8.0) (32). Chondroitinase ABC (Sigma, St. Louis, MO) was dissolved in the buffer described above at a concentration of 5 units/ml. The substrate (50 µg) was incubated with 0.5 unit of Chondroitinase ABC at 37°C for 1.5 h. Activity of the enzyme was confirmed by chondroitin sulfate type A and type C (Sigma) as substrate according to the method of Yamagata et al. (33).

Neuraminidase Digestion. Neuraminidase type X (Sigma) was dissolved in 50 mM sodium acetate buffer, pH 5.1. Digestion was carried out at 37°C for 1.5 h at an enzyme concentration of 0.04 unit/mg of protein. Digestion was stopped by adding an equal volume of SDS:PAGE sample buffer and heating at 100°C for 2 min. Samples were analyzed by Western blotting procedures as described above.

Protease Digestions. Affinity-purified TAG-72 was digested with trypsin, chymotrypsin type VII, papain, and Pronase (all from Sigma) or Staphylococcus aureus V-8 protease (Miles Laboratories, Naperville, IL). Digestions were carried out at 37°C for 1 h, using 50 mM CaCl2 in 40 mM Tris-HCl, pH 8.1, for trypsin digestion; 10 mM CaCl2 in 40 mM Tris-HCl, pH 8.1, for chymotrypsin digestion; 2 mM EDTA in 5 mM cysteine-HCl, pH 6.2, for papain digestion; 40 mM Tris-HCl, pH 7.8, for V-8 protease digestion; and 0.39 mM NaCl:11 mM KCl:5 mM CaCl2:3.5 mM MgSO4 in 60 mM Tris-HCl, pH 7.6, for Pronase digestion.

After digestion, an aliquot was removed, mixed with an equal volume of SDS:PAGE sample buffer, and separated by electrophoresis, followed by Western blotting techniques. A sample was also heated inactivated at 100°C for 2 min, and TAG-72 was quantitated by competition RIA. Heating TAG-72 at 100°C for 2 min did not significantly reduce the binding of B72.3.

To confirm that the antibody used for the competition RIA was not affected by any residual protease activity present after heat inactivation, 125I-B72.3 was incubated with heat-inactivated proteases and separated by SDS:PAGE, followed by autoradiography. The 125I-B72.3 appeared intact.

RESULTS

Identification of a Source for TAG-72. Monoclonal antibody B72.3 has been shown to react with an Mr, 220,000–400,000 glycoprotein complex (34) found in a breast tumor metastasis to the liver which was used as the immunogen for the production of B72.3. This antigen complex has been termed tumor-associated glycoprotein 72 or TAG-72 (8). Because of the limited availability of this breast tumor metastasis, an alternate source of TAG-72 was needed for the purification and characterization of the antigen. LS-174T xenografts in athymic mice were chosen for this purpose. It was found that these xenografts exhibit antigen levels comparable to those seen in metastatic tumor masses from patients, and they demonstrate an identical standard curve in competition RIA to the breast metastasis used as the original immunogen, thus indicating a similar amount of TAG-72 per gram of tumor (8). Immunoperoxidase analysis of LS-174T xenografts using monoclonal antibody B72.3 on formalin-fixed sections reveals cell-associated antigen as well as large extracellular mucinous pools of antigen. This is similar to the antigenic distribution observed in mucinous adenocarcinoma of the human colon and provides a sufficient source of antigen.

Effect of Different Methods of Extraction on TAG-72. TAG-72 identified by Western blotting techniques from LS-174T xenografts shows a range of apparent molecular weights ranging from 200,000 to greater than 1 million (Fig. 1, Lane B). We recognize that the molecular weight determined by SDS:PAGE...
HUMAN TUMOR-ASSOCIATED GLYCOPROTEIN (TAG-72)

is only an approximation since the migration of heavily glycosylated proteins is very different from that of the protein molecular weight markers. The range of molecular weight of TAG-72 from LS-174T tumors is higher than that found in the breast tumor metastasis used as immunogen to generate monoclonal antibody B72.3 (Fig. 1, Lane A). However, this higher molecular weight range observed for TAG-72 from LS-174T xenografts compares very well with that observed from other breast and colon tumors extracted by a similar method from recently obtained, snap frozen material (data not shown).

Large molecules, especially mucins, are subject to shearing (9), resulting in breakage of an original high-molecular-weight form into a variety of lower-molecular-weight fragments. Since the extraction protocol for the antigen shown in Fig. 1, Lane B, consisted of nitrogen decompression followed by sonication, the different molecular weights observed may be due to fragmentation of an original high-molecular-weight molecule. To test this hypothesis, more gentle extraction methods were used, such as homogenization with the Omni-mixer or gentle disruption of the tumor with frosted glass microscope slides. After extraction, the proteins were separated by SDS-PAGE on 3–10% polyacrylamide gels, and the antigens were analyzed by Western blotting procedures.

Dissociation of the tumor with frosted glass microscope slides (Fig. 1, Lane D) appeared to be the least disruptive technique utilized. This technique produced a high-molecular-weight band and an absence of lower-molecular-weight forms. If the high-molecular-weight antigen produced by this method is then sonicated, a range of lower-molecular-weight forms is generated similar to that seen with nitrogen decompression and sonication (data not shown). This demonstrates that TAG-72 fragments with harsh treatments, such as sonication.

Some shearing was evident in the Omni-mix extract (Fig. 1, Lane C), but this method of homogenization appeared to be less destructive to the antigen than nitrogen decompression followed by sonication. Despite some shearing of TAG-72, homogenization with the Omni-mixer was chosen as the initial step for purification, because it allowed easy and reproducible handling of large quantities of tumors.

Purification of TAG-72. Purification of TAG-72 from LS-174T xenografts was performed using a three-step procedure consisting of passing the tumor homogenate through a Sepharose CL-4B column followed by two sequential passages through B72.3 affinity columns. At each step of the purification, the total protein was determined, and the antigen was quantitated by a competition RIA (Fig. 2). Purification was expressed as units of TAG-72 per µg of total protein.

LS-174T tumors were homogenized using the Omni-mixer and centrifuged to remove nuclei and mitochondria. The supernatant was chromatographed on a Sepharose CL-4B column. Essentially all of the TAG-72 was found in the void volume of the column (Fig. 3A), resulting in a 14-fold purification (Table 1, Fig. 2). The exclusion of TAG-72 from the Sepharose CL-4B column is indicative of its high molecular weight (>1 x 10^6). The antigen peak from the Sepharose column was pooled and chromatographed on a B72.3 affinity column (Fig. 3B). Bound TAG-72 was eluted with 3 M Nal, which was found to be the best reagent to desorb the antigen with minimal loss in immunoreactivity. A small amount of TAG-72 (7%) was present in the flow-through of this column (Fig. 3B). The bound peak was further purified by passage through a second B72.3 affinity column.

Sequential passage through a second affinity column gave an increased level of purification. A 21-fold purification was achieved with a single affinity column and was increased to a 47-fold...
Purification of TAG-72 from LS-174T xenografts

Table 1

<table>
<thead>
<tr>
<th>Purification of TAG-72 from LS-174T xenografts</th>
<th>Total units</th>
<th>Total µg</th>
<th>units/µg</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor extract</td>
<td>60,480</td>
<td>60,588</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Sizing peak</td>
<td>51,314</td>
<td>3,515</td>
<td>14.6</td>
<td>85</td>
</tr>
<tr>
<td>Affinity No. 1 peak</td>
<td>25,342</td>
<td>1,201</td>
<td>21.1</td>
<td>42</td>
</tr>
<tr>
<td>Affinity No. 2 peak</td>
<td>8,784</td>
<td>188</td>
<td>46.7</td>
<td>15</td>
</tr>
</tbody>
</table>

Fig. 4. Purification of TAG-72 from LS-174T xenografts. LS-174T tumor homogenate (Lanes 1, 3, 5, and 7) and TAG-72, purified by the three-step procedure described here (Lanes 2, 4, 6, and 8), were separated by SDS-PAGE on 3-10% polyacrylamide gels followed by Western blotting procedures (Lanes 1, 2, 3, and 4) or by staining with Coomassie Blue (Lanes 5 and 6) or periodic acid/Schiff reagent (Lanes 7 and 8). Equal antigen (10 units) was added to Lanes 1 and 2. Equal protein (10 µg) was added to Lanes 3 to 8.

The total LS-174T tumor extract was similarly analyzed by density gradient ultracentrifugation. The TAG-72 in the total tumor extract produced essentially an identical density profile, indicating that the TAG-72 molecule isolated by our purification method did not represent a subset of the original antigen (Fig. 5B).

Analysis of Purified TAG-72 by Density Gradient Ultracentrifugation. The density of affinity-purified TAG-72 was determined by equilibrium ultracentrifugation in CsCl as shown in Fig. 5A. The gradient extended from 1.25 g/ml-1.63 g/ml and was analyzed for TAG-72 content in a SPRIA. The highest antigenic activity was detected at a density of 1.45 g/ml, typical of that found for heavily glycosylated glycoproteins such as mucins (11, 35).

The total LS-174T tumor extract was similarly analyzed by density gradient ultracentrifugation. The TAG-72 in the total extract produced essentially an identical density profile, indicating that the TAG-72 molecule isolated by our purification methods did not represent a subset of the original antigen (Fig. 5B).
Identification of Oligosaccharide Sequences on TAG-72.

The presence of specific oligosaccharide sequences on the affinity-purified TAG-72 molecule(s) was demonstrated using monoclonal antibodies to specific blood group oligosaccharides in a double determinant assay. Using this assay, it was found that the molecule containing the B72.3 epitope also contained Leα, Leβ, H type 2, and sialylated Leα oligosaccharide structures (Table 2). The affinity-purified TAG-72 molecule also bound monoclonal antibody 19-9, and it can therefore be postulated that the molecule containing the TAG-72 determinant also contains sialylated Leα oligosaccharide. However, since the binding of monoclonal antibody 19-9 was determined by direct binding SPRIA using purified TAG-72 rather than by a double determinant assay used for the detection of the other blood group-related oligosaccharides, this binding may be to a contaminant present in the purified TAG-72 preparation. Further work addressing this question is in progress.

Antibody B72.3 does not bind purified glycolipid containing any of the blood group oligosaccharides tested (Leα, Leβ, Leβ, A and B blood groups, H type 2, sialylated Leα, and sialylated Leα). Similarly, antibody B72.3 does not bind glycolipids extracted from a wide variety of human tumors and tumor cell lines as that of a mucin. Along with the density determinations and double determinant observed by Western blotting procedures (Fig. 6a). This finding, determined by immunostaining thin-layer chromatograms (data not shown). These include the LS-174T xenograft and the breast tumor metastasis used as immunogen in the production of B72.3. These properties of monoclonal antibody B72.3 clearly distinguish it from that of monoclonal antibody 19-9.

Analysis of TAG-72 by Enzymatic Digestions. Digestion of affinity-purified TAG-72 by Chondroitinase ABC was used to determine whether the TAG-72 epitope is carried by a proteoglycan or a mucin; chondroitin sulfate proteoglycans are sensitive to digestion by trypsin, chymotrypsin, papain, Pronase, or S. aureus V-8 protease. The sensitivity of TAG-72 to digestion was analyzed by Western blotting procedures. A competition RIA was used to quantify the effect of proteolytic digestion on the antibody-binding sites and to determine whether the complete TAG-72 molecule was cleaved into small units that retained immunoreactivity but were undetectable by Western blotting techniques.

As shown in the Western blots (Fig. 6c), all the proteases tested exhibited some alterations in the molecular weight of the molecule carrying the TAG-72 epitope. Digestion by trypsin, chymotrypsin, and staphylococcal V-8 protease altered the pattern of bands observed in Western blots, indicating that the overall TAG-72 molecule was sensitive to these proteases (Fig. 6c, Lanes 2, 3, and 6). However, no reduction in antibody-antigen binding was detected by competition RIA (Fig. 6d), indicating that the actual epitope on TAG-72 recognized by B72.3 was unaffected by these three proteases.

Digestion by papain and Pronase appeared to be the most destructive (Fig. 6c, Lanes 4 and 5). Competition RIA confirmed that approximately 75% of the antigenic determinants recognized by B72.3 were destroyed by either papain or Pronase digestion (Fig. 6d). The sensitivity of TAG-72 to these proteases suggests that either protein is directly involved in the antibody binding site or is necessary for the conformational integrity of the epitope recognized by B72.3.

DISCUSSION

Monoclonal antibody B72.3 is directed against a high-molecular-weight determinant called TAG-72. TAG-72 precipitated from the breast tumor metastasis used as immunogen was found to have an apparent molecular weight of approximately 220,000–400,000 by SDS-PAGE (Ref. 34; Fig. 1a). However, the work reported here provides evidence that this molecular weight range may reflect a shearing of the native high-molar-mass antigen due to the sonication step used in the initial extraction. When LS-174T xenografts or snap-frozen colon and breast carcinoma biopsy material was prepared without sonication, the TAG-72 identified in Western blots exhibited a higher molecular weight without such an apparent heterogeneity in size. This antigen is found both in the stacking gel and at the top of a 3-
HUMAN TUMOR-ASSOCIATED GLYCOPROTEIN (TAG-72)

Fig. 6. Enzymatic digestion of TAG-72. Affinity-purified TAG-72 (a, c, d) or LS-174T tumor extract (b) was digested with Chondroitinase ABC (a), neuraminidase (b), or a variety of proteases (c, d) as described in “Materials and Methods.” After digestion, proteins (10 µg/lane) were separated by SDS-PAGE on 3-10% polyacrylamide gels and analyzed using Western blotting procedures. The effect of the various protease digestions on TAG-72 was quantitated by competition RIA (d) and expressed as units/ml. Lane 1, affinity-purified TAG-72 control; Lane 2, Chondroitinase ABC-digested TAG-72; Lane 3, trypsin digestion (1.0 unit/2.5 µg TAG-72); Lane 4, papain digestion (0.1 unit/2.5 µg TAG-72); Lane 5, Pronase digestion (0.1 unit/2.5 µg TAG-72); Lane 6, staphylococcal V-8 protease digestion (5.0 units/2.5 µg TAG-72).

10% polyacrylamide separating gel after SDS-PAGE. It is difficult to assign a molecular weight to heavily glycosylated glycoproteins on the basis of SDS-PAGE. However, the high molecular weight (>1 x 10^6) is apparent, since it is found in the void after Sepharose CL-4B chromatography.

TAG-72 was chromatographed on a Sepharose CL-4B column in the presence of 6 M guanidine-HCl. The antigen profile obtained in SPRIA was similar to that obtained in the absence of guanidine-HCl, thus indicating that the molecular weight observed was not due to the aggregation of low-molecular-weight forms (data not shown). These results were confirmed by Western blotting procedures.

TAG-72 was purified by a three-step procedure involving Sepharose CL-4B chromatography, followed by two sequential passages of the extract through B72.3 affinity columns. The Sepharose column was useful as an initial step to remove many of the contaminating lower-molecular-weight murine proteins, such as albumin and murine immunoglobulin. This column alone produced a 14-fold purification of the antigen. Passage through a series of two B72.3 affinity columns was able to increase the purification of TAG-72 to 47-fold.

The 47-fold purification obtained by this three-step procedure may be deceptive low. The LS-174T xenograft has large extracellular pools of antigen in addition to cell-associated antigen. These extracellular pools result in an unusually high concentration of the antigen. The competition RIA is based on an arbitrary quantitation of 1 unit of antigen as the amount of antigen corresponding to 1 µg of protein in the LS-174T tumor. If this starting assumption is based on a tumor with extremely high levels of antigen per gram of tumor, the degree of purification obtained may be misleading relative to other nonmucinous tumors or tissue culture cells which lack the high antigen concentration present in extracellular pools. However, since we feel that the LS-174T xenograft is representative of typical mucinous adenocarcinomas seen in colon carcinoma patients, we feel that our choice of both antigen source and the definition of 1 unit of TAG-72 is justified.

The exact nature of the epitope on the TAG-72 molecule detected by monoclonal antibody B72.3 is unknown at this time. However, neuraminidase digestion of TAG-72 greatly reduces antibody binding, thus providing evidence that sialic acid is either involved in the antigenic determinant or responsible for the conformational integrity of the antibody binding site. Periodate oxidation also reduces antibody binding, providing further evidence that carbohydrate is involved in the epitope. Whether protein, in addition to carbohydrate, forms part of the TAG-72 antigenic determinant remains unresolved. Papain and Pronase digestion reduced antibody-antigen binding by approximately 75% as shown by competition RIA. Although this provides evidence that the carbohydrate portion of the molecule is involved in the epitope or affects its conformational integrity, we cannot rule out contaminating glycosidase activity in the protease sample. Further work to elucidate the nature of the TAG-72 epitope is in progress.

Monoclonal antibodies often recognize carbohydrate determinants found on both glycoproteins and glycolipids. Monoclonal antibody 19-9 provides an example of this (15, 23). It appears that the TAG-72 epitope is not found on glycolipids. This clearly distinguishes the TAG-72 epitope from the determinant recognized by monoclonal antibody 19-9.

Data are presented here to suggest that the TAG-72 molecule is a mucin. This conclusion is based on the following observations: (a) TAG-72 has a high molecular weight (>1 x 10^6) as shown by its exclusion from a Sepharose CL-4B column; (b) the density of TAG-72 determined by equilibrium centrifugation in CsCl was 1.45 g/ml, indicating a heavily glycosylated glycoprotein (11, 35); (c) TAG-72 demonstrates a change in migration after neuraminidase digestion, indicating that it is a heavily sialylated molecule with an abundance of O-glycosidically linked oligosaccharides (36) characteristic of mucins; (d) blood group antigens commonly found on mucins are found on affinity-purified TAG-72; and (e) Chondroitinase ABC digestion had no effect on TAG-72, thus demonstrating that the TAG-72 epitope is not expressed on a chondroitin sulfate proteoglycan.

The purification of TAG-72 from LS-174T as described in this paper should enable further characterization of both the mucin-like molecule and epitope defined by monoclonal antibody B72.3. This purification procedure will also allow one to compare mole-
cules from differing sources that exhibit the B72.3 epitope. The TAG-72 molecule purified in these studies can now be used toward the production of "second generation" monoclonal antibodies reactive with different determinants on the TAG-72 molecule. These antibodies should subsequently aid in the further characterization of this tumor-associated antigen.

REFERENCES

Analysis of a Human Tumor-associated Glycoprotein (TAG-72) Identified by Monoclonal Antibody B72.3

Virginia G. Johnson, Jeffrey Schlam, Andrew J. Paterson, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/46/2/850

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/46/2/850.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.