Development of a Xenograft Glioma Model in Mouse Brain

Andrew H. Kaye,1 George Morstyn, Ian Gardner, and Ken Pyke

Received 5/17/85; revised 9/24/85; accepted 10/24/85.

To whom requests for reprints should be addressed, at the Ludwig Institute for Cancer Research.

ABSTRACT

Xenograft intracerebral glioma models have been developed in normal mice by growing the rat C6 glioma in either adult or neonatal mouse brains. Using this tumor line it was possible to grow discrete intracerebral gliomas in either CBA or AKR adult mice or neonatal mice. The size of the tumor mass and length of survival was directly related to the number of tumor cells injected and the time after implantation. To obtain localized intracranial tumor growth cells were suspended in a 1% agarose solution before implantation. Following injection of 106 cells into the frontal lobe of adult CBA or AKR mice, discrete tumor masses greater than 4 mm in diameter were obtained in 90% of animals at 14 days, and the largest tumors in adult mice occurred between 21 and 28 days after implantation. The tumor size following implantation of 106 cells was significantly greater than with 105 cells at 7 days (P < 0.05) and at 14 and 21 days (P < 0.01). Less than 60% of mice of BALB/c, RIII, or C57 black strains developed tumors greater than 4 mm diameter at 14 days after intracranial injection of 105 C6 cells. Using neonatal mice it was found that when 105 cells were injected intracranially tumors greater than 4 mm in diameter developed in 14 of 15 animals within 2 weeks (CBA mice). Similar results were seen in the RIII, AKR, C57 black, and BALB/c strains. Longer growth periods resulted in larger tumors, up to 8 mm in diameter (6 of 10 animals at 20 days). The tumors in the neonatal animals were not as discrete as in the adult mice, and tumor often spread to the meninges and into the lateral ventricles. The tumor harvested from the brain had a cloning efficiency of 1.2 ± 0.4% (SD).

A panel of monoclonal antibodies was raised to the C6 glioma, and this was used to define clearly the margins of the tumor within the brain. The xenograft mouse models should prove useful for the study of the therapy of gliomas.

INTRODUCTION

The results of treatment of malignant gliomas of the brain are most unsatisfactory. Even the best results in malignant gliomas of high grade treated with surgery, radiation therapy, and bis-chloroethyl nitrosourea systemic therapy report a median survival time of less than 1 year (1–3). An accurate and easily reproducible animal model of the tumor is essential if there are to be significant improvements in patient survival. Although many tumor systems have been developed for the study of glioma, none of these is completely satisfactory for the study of spontaneous human gliomas; there should be a predictable growth rate of the tumor, the ability to grow the tumor in tissue culture, and a knowledge of the metabolic proliferation kinetics and chemoresponsivity; and the model should be in a small animal to reduce expense.

Of the available models implantable tumor systems have the advantage that the precise histology of the tumor is known and the exact location of the tumor can be predicted. The mouse is a valuable laboratory investigational animal, and although a nude mouse model is established for the study of glioma (12) it has the disadvantages that as an immuno-suppressed animal it is not entirely representative of the clinical situation, and there are difficulties in housing and handling these mice. Ependymoblastoma tumor has been used as an implantable intracerebral tumor model in normal mice (10), but this is a rare tumor in humans (4).

We have developed an easily reproducible xenograft mouse glioma brain model using the C6 rat glioma in both neonatal and adult mouse brains. The C6 glioma cell line was originally produced by i.v. injection of N-nitrosomethyl urea into male Wistar rats (13). The features of this cell line have been described in detail previously (13–16). A panel of monoclonal antibodies was raised to the C6 tumor, and these were used to define the brain-tumor border. These glioma tumor models and the monoclonal antibodies should prove useful for the evaluation of new tumor therapies.

MATERIALS AND METHODS

Cells. The C6 glioma cell line was obtained from the American Type Culture Collection, and the cells were grown in RPMI 1640 medium supplemented with 10% FCS (Commonwealth Serum Laboratories, Parkville, Australia). Cells were harvested during the log phase of growth.

Intracranial Implantation of C6 Glioma. Adult mice from 6–8 weeks of age and neonatal mice less than 48 h old obtained from the Walter and Eliza Hall Institute animal colony (Melbourne, Australia) were used. The strains investigated in this study were CBA, BALB/c, AKR, C57 black, and RIII. To establish intracranial gliomas in mice the cells were suspended in a solution of double strength RPMI 1640 containing 1% agarose and kept at room temperature until injected.

Adult mice were anaesthetised by penthrane inhalation, and a 1-cm midline scalp incision was made. If the coronal suture was fused, a burr hole was inserted with a 1-mm dental burr 1 mm in front of the coronal suture, 3 mm to the left of the midline. The tumor cell suspension (10 μl) was injected using a Hamilton syringe with a 27-gauge disposable needle, either through the burr hole or through the unfused coronal suture 3 mm to the left of the midline. The needle was covered by a plastic sleeve permitting an injection depth of 3.5 mm from the outer table of bone. The needle was withdrawn 30 s after injection of the cell suspension, and the burr hole was covered with sterile bone wax (Ethicon, Edin-
were given injections of 5 µl of tumor suspension through the skin using a 27-gauge needle covered with a plastic sleeve to permit an injection depth of 3 mm from the skin. The injection was 1 mm caudal to the coronal suture, which could be visualized with a strong light, and 2 mm to the left of the midline. The needle was withdrawn 15 s after injection of the cell suspension, and light pressure was then applied to the injection site for a further 15 s.

Subcutaneous Implantation. Fifty adult mice (BALB/c, CBA, AKR, RII, C57 black strain) were given injections of 10^7 cells (25 µl) s.c. in the midline 5 mm posterior to the intercanthal line.

Subcutaneous and Intracerebral Implantation. Sixty adult CBA mice were given injections of 10^7 cells (25 µl) s.c. 1 cm posterior to the intercanthal line. Intracranial implantation of C6 cells (10^4, 10^5, 10^6 cells; 15 in each group) was performed 2 weeks after the s.c. injection.

Animals were sacrificed by cervical dislocation at various times up to 60 days after inoculation. Brains were removed, placed in 10% formal saline (mouse toxicity, pH 7.4); HAT. hypoxanthine-aminopterin-thymidine; MNU. methylnitrosourea.

Adult Mice. When 10^7 cells were injected into CBA adult mice, 9 of 10 animals developed tumors 4 mm in diameter or greater within 14 days, and 90% of the animals were dead by 14 days (Fig. 1A). When 10^6 cells were implanted, 9 of 10 animals had tumors larger than 4 cm in diameter at 14 days, and 90% of the animals died by 24 days (Table 1; Figs. 1A and 2A). The growth of the intracerebral tumor following injection of 10^6 cells is shown in Fig. 3. It can be seen that the tumor progressively enlarges without macroscopic central necrosis and with a distinct tumor-brain margin. There is considerable ventricular distortion in those brains harboring large tumors. There was no significant difference in the tumor size between animals given injections of 10^7

Flow Cytometry. C6 glioma cells were harvested in log phase growth using mEDTA. Aliquots of 10^6 cells were reacted with 0.5 ml control supernatant or LMM 25, 27, or 28 monoclonal antibody supernatants using mEDTA. Aliquots of 10^6 cells were reacted with 0.5 ml control supernatant or LMM 25, 27, or 28 monoclonal antibody supernatants for 1 h at 4°C. The cells received 3 washes with PBS containing 1% FCS and 0.5% sodium azide and were incubated for 30 min at 4°C with a 1/40 dilution of fluorescein isothiocyanate-conjugated rabbit-anti mouse immunoglobulin (Dakopatts A/S, Denmark). After a further wash, the cells were resuspended in 2 ml of PBS-FCS-oxide and analyzed for cell surface staining on an Ortho System 50 flow cytometer (Ortho Diagnostic Systems, Westwood, MA).

In Vitro Studies. Gliomas were harvested from mouse brains 16 days after intracerebral inoculation of 10^6 cells. A single cell suspension was prepared by trypsinization and passage through a sieve (size 60 mesh). The viable cells were counted using eosin exclusion, and 200 to 2000 cells per dish were cultured in T25 flasks in RPMI 1640 with 10% FCS.

Statistical Analysis. Data were analyzed using a 2-tailed Student's t-test to test the hypothesis that mean values in each group were equal. A P-value of less than 0.05 was considered significant.

RESULTS

Effect of cell dosages on the growth of implanted gliomas in CBA or AKR mice

The percentage of CBA or AKR mice having tumors 4 mm in diameter or larger at times from 2–8 weeks after implantation of C6 tumor cells. The cells were suspended in 10^6 RPMI 1640 containing 1% agarose (n = 20 in each group). The growth of tumor was identical in CBA and AKR strains.

Table 1

Effect of cell dosages on the growth of implanted gliomas in CBA or AKR mice

<table>
<thead>
<tr>
<th>Time after implantation</th>
<th>10^6</th>
<th>10^5</th>
<th>10^4</th>
<th>10^3</th>
<th>10^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 weeks</td>
<td>20</td>
<td>90</td>
<td>90</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>4 weeks</td>
<td>50</td>
<td>90</td>
<td>90</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>6 weeks</td>
<td>0</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>8 weeks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

*Less than 5% of animals survived to this time.

Table 2

Effect of cell dosage on the growth of implanted gliomas in BALB/c mice

The percentage of BALB/c adult mice having tumors 4 mm in diameter or larger at times from 2–8 weeks after implantation of C6 tumor cells. The cells were suspended in 10^6 volume of double strength RPMI 1640 containing 1% agarose (n = 20 in each group).

<table>
<thead>
<tr>
<th>Time after implantation</th>
<th>10^6</th>
<th>10^5</th>
<th>10^4</th>
<th>10^3</th>
<th>10^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 weeks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>4 weeks</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>6 weeks</td>
<td>0</td>
<td>10</td>
<td>40</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>8 weeks</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>50</td>
<td>75</td>
</tr>
</tbody>
</table>

*The abbreviations used are: FCS, fetal calf serum; RPMI, phosphate-buffered saline (mouse toxicity, pH 7.4); HAT, hypoxanthine-aminopterin-thymidine; MNU, methylnitrosourea.
A XENOGRAFT GLIOMA MODEL IN MOUSE BRAIN

Fig. 1. In vivo intracerebral growth of C6 glioma in mice. Tumor size (mm) is shown following intracerebral implantation of C6 tumor cells (10^6, 10^7, 10^8, 10^9, 10^10) into adult CBA mice (A) and neonatal mice (B). The ordinate shows the mean size of the tumors, and the abscissa shows the time (days) following implantation (n = 4–10 for each group). Bars, SE. •, 10^7 cells injected; A, 10^6 cells injected; O, 10^5 cells injected; ；, 10^4 cells injected. The largest tumors were 6.8 mm in diameter, and these occurred in CBA mice 21–28 days after injection with 10^6 cells.

Fig. 2. Survival of mice following intracerebral inoculation with C6 glioma. Survival of adult CBA mice (A) and neonatal mice (B) following intracerebral inoculation of C6 glioma cells (10^6, 10^7, 10^8, 10^9) (n = 4–15 for each group). •, 10^7 cells injected; A, 10^6 cells injected; O, 10^5 cells injected; ；, 10^4 cells injected.

Neonatal Mice. When 10^5 cells were injected intracranially...
into neonatal CBA mice, tumors greater than 4 mm in diameter occurred in 14 of 15 animals within 14 days (Table 3). These tumors were not as discrete as those found in the adult mouse brain model, and there was often extensive spread to the meninges and into the lateral ventricles. Longer growth periods resulted in larger tumors, up to 7.7 mm in diameter (6 of 10 animals at 20 days). Following implantation of 10^6 cells, 6 of 10 animals had tumors larger than 4 mm in diameter at 14 days, but no tumor (0 of 30) reached this size if 10^2 cells were implanted. No tumors developed after implantation of 10^3 cells (0 of 15). The tumor size following implantation of 10^2 cells was significantly greater compared with 10^4 or 10^5 cells at 7 (P < 0.05), 14, and 21 days (P < 0.01) (Fig. 1B). Injection of 10^6 cells produced tumors larger than 4 mm in diameter at 14 days in 5 of 5 animals. However no animal survived longer than 17 days from the time of injection of 10^6 cells, whereas 50% of animals given injections of 10^5 cells survived longer than 20 days (Fig. 2B).

Fig. 1 shows that following implantation of 10^4, 10^5, or 10^6 cells the tumor size was larger in neonatal mice brains than in adult brains at times from 7 to 14 days (10^6 cells), 7 to 28 days (10^5 cells), or 14 to 42 days (10^6 cells). After implantation of 10^3 cells the tumor was larger in neonatal mice brains from 7 to 42 days (P < 0.05).

Other strains of mice were tested; similar growth patterns were seen in neonatal RIII, C57 black, AKR, and BALB/c mice (at least 45 mice of each strain were given injections). Five adult mice died within 24 h of the injection in the first 100 mice given injections. Perioperative mortality was 2% for the remainder of the animals given injections. The brains were removed from 88% of those animals that died in the perioperative period and were fixed in formalin. Three animals had intracerebral hematomas, and one had an extracerebral hematoma. The major cause of early death was thought to be due to anesthetic complications which occurred especially early in the series, as there was some difficulty in judging the appropriate depth of anesthesia.

A complete autopsy of 25 animals that died as a result of their intracranial tumor was performed, and no metastatic tumors were found. However, in the mice that were given injections in the neonatal period, there was considerable extra cerebral spread of the tumor that invaded the bones of the cranial vault and the pericranium.

Table 3

<table>
<thead>
<tr>
<th>Time after implantation</th>
<th>% of mice with tumors 4 mm in diameter or greater after the following no. of cells were inoculated:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^2</td>
</tr>
</tbody>
</table>
| 2 weeks | 0 | 50 | 98 | -
| 4 weeks | 0 | 50 | 98 | -
| 6 weeks | 0 | 50 | -
| 8 weeks | 0 | 75 | -

* No animals survived to this time.

Subcutaneous and Intracranial Implantation. Previous s.c. inoculation of 10^7 C6 glioma cells did not affect the growth of intracerebral tumors in adult CBA mice following implantation of 10^5, 10^6, and 10^7 cells. However the size of intracranial tumor that developed after implantation of 10^4 cells was significantly smaller (P < 0.05) at 7, 14, and 21 days compared with tumors that developed if there had been no previous s.c. inoculation.

Subcutaneous Implantation

There was no growth of tumor following s.c. implantation of the cells in either the adult or neonatal mice.

Histology of Tumor

The histological appearance of the tumor was of a high grade malignant astrocytoma with multinucleated cells, mitotic figures (1–2 per high power field), and vascular proliferation. The tumor was highly vascular, and necrosis occurred only occasionally around residual agarose in the center of the tumor.

There was a discrete border between the growing edge of the tumor (Fig. 4) and the surrounding brain, although in some areas tumor cells were seen to be invading the brain (Fig. 4). If 10^4 or 10^7 cells were injected there was only slight lymphocytic infiltration, which was evident on the periphery of the tumor. When smaller numbers of cells were implanted there was greater lymphocytic infiltration around the tumor and within the tumor mass.

Identification of Tumor Margins Using Monoclonal Antibody

There were 5 hybridomas produced which secreted monoclonal antibody directed at the C6 glioma cell line. The fluorescence profiles from the flow cytometer (data not shown) show that each of the 3 monoclonal antibodies (LMM 25, LMM 28, and LMM 27) react strongly and uniformly with unfixed C6 cells.
A XENOGRAFT GLIOMA MODEL IN MOUSE BRAIN

Fig. 5. Frozen section of C6 glioma growing in CBA mouse brain stained with monoclonal antibody LMM 27 immunohistochemistry showing the tumor margin and islets of tumor invading the adjacent brain (arrowheads). Magnification, x 100.

in suspension, indicating that they bind to cell surface antigens. None of the antibodies stained normal human, mouse, or rat brain parenchyma. LMM 25 stained normal rat colon and lung, but LMM 27 and LMM 28 were negative on all normal rat tissue tested (including colon, lung, liver, and spleen).

Frozen sections of CBA mouse brains containing growing C6 tumors were stained by either 2 layer immunofluorescence or immunoperoxidase methods. Fig. 5 shows a tumor margin stained by LMM 27 immunohistochemistry. There was strong staining of all tumor cells, which is obvious by their large pale nuclei. Areas of normal brain beyond the tumor margin are unstained, but there were a number of small islands and projections of tumor cells beyond the margin, all of which stained strongly with this antibody.

In Vivo-in Vitro Studies. The tumor was harvested from the mouse brain, and a single cell suspension was prepared. Cell viability, estimated by eosin exclusion, was in the range of 80 to 90%. These cells were cloned in medium, and the cloning efficiency was 1.2 ± 0.4% (SD) (n = 16). Cells harvested from normal brain did not clone under these conditions.

DISCUSSION

We have shown that the rat C6 glioma can be reliably grown in a xenograft mouse model. It is particularly useful because it grows in both neonatal and adult mice, in a localized region of the brain and in a reproducible manner. Growth of the glioma can be detected by morphological criteria, in vitro cloning, and by a monoclonal antibody that only detects the glioma and not the normal brain parenchyma. A disadvantage of the model is that it is based on a transplantable cell line rather than an induced tumor. The histology of the C6 tumor in this model was similar to a high grade astrocytoma in humans. Although the tumor has a relatively discrete edge macroscopically, it did resemble the human glioma in that there was marked microscopic invasion of the tumor into the surrounding brain, which was confirmed by monoclonal antibody staining.

When 10⁶ cells were injected into the frontal lobe discrete tumor masses greater than 4 mm in diameter were obtained in 90% of animals at 14 days. Animals given injections of 10⁷ cells died with tumors less than 4.5 mm in diameter. The largest tumors in adult mice were obtained between 21 and 28 days after implantation of 10⁶ cells. However, as 80% of the animals with this size inoculum died after 20 days, the most appropriate time to utilize the animals harboring the tumor is between 14 and 18 days after implantation of 10⁶ cells. In adult mice, tumors larger than 6.2 mm diameter were not compatible with survival. To obtain localized tumor growth it was essential to suspend the cells in a 1% agarose solution before implantation. Using this tumor line and CBA adult mice it was possible to predict the size of the tumor mass and length of animal survival based on the number of cells injected and the time after implantation. In neonatal animals larger tumors (up to 7 mm in diameter) were obtained at the time of death, as the cranial vault was able to expand due to the unfused cranial sutures.

The tumor was able to grow intracranially but not s.c. perhaps because the brain is an immunologically privileged organ (19–28). Nevertheless lymphocytes specifically reactive to glioma cells have been shown in the peripheral circulation (29, 30), and lymphocytic infiltration has been demonstrated around human gliomas (31, 32). MNU-induced tumors have been shown to be highly immunogenic in vivo (14, 33), although transplacental ethynitrosourea-induced tumors are capable of only weaker rejection responses (34). The reason that the C6 tumor grew in the CBA and AKR adult mice and not as reliably in other strains may be related to the histocompatibility receptors, as the CBA and AKR mice have the same major histocompatibility type (H-2k).

If the adult mice were immunized with C6 cells before intracerebral implantation there was no difference in tumor growth at high levels of tumor inoculation (10⁶ to 10⁷ cells), but growth of...
The human disease is unclear (4) because the mouse cells lack many of the ultrastructural characteristics of ependymal cells (45) and the cell proliferation kinetics are unlike those of human tumors (8).

A monoclonal antibody has been developed previously to the C6 rat glioma (46). Our antibody may be similar to that described previously, although the application of the antibody staining in tissue sections to exactly define the tumor margin of gliomas appears to be novel. It has been suggested previously (47) that monoclonal antibodies may be useful for the therapy of gliomas when coupled to chemical toxins, chemotherapy agents, or radionuclides, but a lack of specificity of the antibodies has been an important factor limiting its use in patients (47). The specificity of our antibodies should allow in vivo testing of these types of therapies using our xenograft tumor model.

This C6 glioma xenograft mouse model and monoclonal antibody should prove useful for the study of therapy of gliomas, as both the size and the position of the tumor can be judged accurately, and the monoclonal antibody clearly defines the tumor extension into the adjacent brain. In addition, the C6 glioma cell line is easily grown in tissue culture, maintenance stocks can be kept frozen for future use, good single cell suspensions can be prepared for accurate quantitative estimation of tumor inocula, and the presence and survival of tumor cells can be accurately monitored by in vitro culture or detection by monoclonal antibodies.

ACKNOWLEDGMENTS

We thank R. Gogerly, P. Masendycz, and R. Davies for technical assistance, R. Whitehead and A. W. Burgess for helpful comments, and Sue Blackford and Joanne Wright for typing the manuscript.

This work was in part performed in the Higginbotham Neuroscience Laboratory and the Department of Surgery (University of Melbourne), Royal Melbourne Hospital, Australia.

REFERENCES

A XENOGRAFT GLIOMA MODEL IN MOUSE BRAIN

Table 4

Comparison of tumor size in adult CBA mice and adult Wistar rats

<table>
<thead>
<tr>
<th>No. of cells implanted</th>
<th>Xenograft host<sup>a</sup> mean tumor diameter (mm) at day:</th>
<th>Isograft host<sup>b</sup> mean tumor diameter (mm) at day:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>10<sup>a</sup></td>
<td>0.7 ± 0.3<sup>c</sup></td>
<td>1.4 ± 0.3</td>
</tr>
<tr>
<td>10<sup>b</sup></td>
<td>1.0 ± 0.2</td>
<td>2.0 ± 0.8</td>
</tr>
<tr>
<td>10<sup>c</sup></td>
<td>1.5 ± 0.2</td>
<td>3.9 ± 0.4</td>
</tr>
<tr>
<td>10<sup>d</sup></td>
<td>2.4 ± 0.2</td>
<td>4.2 ± 0.2</td>
</tr>
</tbody>
</table>

^a Data derived from Chart 1.
^b Data from Ref. 36 and previously unpublished data.
^c Mean ± SE.
^d P < 0.05.
^e No animals survived to this time.
A XENOGRAFT GLIOMA MODEL IN MOUSE BRAIN

Development of a Xenograft Glioma Model in Mouse Brain

Andrew H. Kaye, George Morstyn, Ian Gardner, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/46/3/1367

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/46/3/1367. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.