Effect of Dietary Fish Oil on Azoxymethane-induced Colon Carcinogenesis in Male F344 Rats

Bandaru S. Reddy and Hiroshi Maruyama

Divisions of Nutrition and Endocrinology [B. S. R.] and Experimental Pathology and Toxicology [H. M.], Naylor Dana Institute for Disease Prevention, Valhalla, New York 10595

ABSTRACT

The effect of dietary intake of different levels of Menhaden fish oil on azoxymethane-induced carcinogenesis was examined in male F344 rats fed the semipurified diets. Starting at 5 weeks of age, groups of animals were fed the 5% corn oil (low corn oil) diet. At 7 weeks of age, all animals except the vehicle-treated controls were given s.c. injections of azoxymethane (15 mg/kg body weight/week for 2 weeks). After 4 days, groups of animals were fed the diets containing 4% Menhaden oil + 1% corn oil (low fish oil), 22.5% Menhaden oil + 1% corn oil (high fish oil), 5% corn oil, and 23.5% corn oil (high corn oil). Thirty-four weeks after azoxymethane injections, all animals were necropsied. High fish oil diet had no tumor promoting effect in the large intestine when compared to the high corn oil diet. There was no difference in large intestinal tumor incidence among the other dietary groups. The results of this study indicate that fish oils rich in highly polyunsaturated n-3 fatty acids do not enhance large bowel carcinogenesis and that the fatty acid composition of the dietary fat is one of the determining factors in large bowel carcinogenesis.

INTRODUCTION

Epidemiological studies have shown that diets particularly high in total fat and animal fat or low in certain fibers are generally associated with an increased risk for colon cancer development (1-6), although a recent prospective study showed no increased effect of dietary saturated fat or total fat in colon cancer (7). Discrepancies in epidemiological studies might have stemmed from methodological problems of dietary assessment, because several of these studies not only rarely distinguished between the types of saturated and polyunsaturated fats consumed but did not take into consideration other confounding factors such as dietary fiber. Several animal model studies demonstrated that high fat diets containing corn oil, safflower oil, lard, or beef tallow enhanced the chemically induced colon carcinogenesis. Several studies in animal models demonstrated that high levels of high dietary corn oil in rats. Dietary intake of 20% Menhaden fish oil when compared to 20% corn oil produced a significant inhibition in both size and number of preneoplastic lesions in rat pancreas (27). Karmali et al. (28) reported that daily treatment of 0.2 ml Max EPA, a commercially available fish oil, inhibited growth of transplantable mammary tumors in rats. The present study was designed to investigate the modifying effect of dietary fish oil on AOM-induced large intestinal carcinogenesis in rats.

MATERIALS AND METHODS

Animals, Diets, and Carcinogen. A total of 124 weanling male F344 rats were purchased from Charles River Breeding Laboratories (Wilmington, MA). All semipurified dietary ingredients were from Dyets, Inc. (Bethlehem, PA), and AOM (CAS:25843-45-2) was from Ash-Stevens, Inc. (Detroit, MI). Menhaden fish oil was donated by Zapata Haynie Corporation (Reedville, VA).

Male F344 rats received at weaning were quarantined for 10 days and then randomly assigned into 4 dietary groups of 36 animals each. Each dietary group was divided into AOM-treated (24 animals) and vehicle-treated (12 animals) subgroups and housed 3 to a plastic cage with filter tops in the animal holding room under controlled environmental conditions of a 12-h light-dark cycle, 50% humidity, and 21°C. All animals were fed ad libitum and had free access to water. The food cups were replenished every day.

The composition of experimental semipurified diets is shown in Table 1 and is based on revised AIN-76 diet (29, 30). The composition of high- and low-fat diets was adjusted so that the animals in all dietary groups would consume the same amount of calories, protein, vitamins, minerals, and fiber (14, 31). All diets were prepared in our laboratory 3 times weekly and stored in a cold room at 4°C. Corn oil (1%) was added to low and high Menhaden fish oil diets to provide linoleic acid and to alleviate essential fatty acid deficiency. Freshly prepared diets and those stored for 2 days in a cold room were analyzed for peroxide using thioarbituric acid method. There were no detectable levels of peroxides in the diets.

The fatty acid composition of Menhaden fish oil was analyzed and provided by Zapata Haynie Corporation. It contained about 15% palmitic acid (C16:0), 12% palmitoleic acid (C16:1, n-6), 10% oleic acid (C18:1, n-6), 16% eicosapentaenoic acid (C20:5, n-3), and 11% docosahexaenoic acid (C22:6, n-3), and 1.8% linoleic acid (C18:2, n-6). Corn oil contains about 10% palmitic acid, 31% oleic acid, and 56% linoleic acid (33). Menhaden fish oil and corn oil contained about 25 and 150 ppm of α-tocopherol, respectively.

Experimental Procedure. Starting at 5 weeks of age, all animals were fed the experimental diet containing 5% corn oil and continued on this diet until 4 days after carcinogen or vehicle treatment. At 7 weeks of age, animals intended for carcinogen treatment in each subgroup were given s.c. injections of AOM (15 mg/kg body wt/wk) once weekly for 2 weeks, whereas the animals intended for vehicle treatment were given

Received 1/14/86; revised 3/21/86; accepted 3/25/86.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The abbreviation used is: AOM, azoxymethane.
Body Weights and Food Consumption. Animals fed the high Menhaden oil diet and treated with AOM or vehicle weighed less than those fed the other diets (Table 2). The decrease in body weight of animals fed the high Menhaden oil diet was observed starting at 8 weeks on this diet. On the other hand, body weights of animals fed the corn oil diets and low Menhaden oil diet were comparable throughout the experimental period. Food consumption measured at the end of 12 and 22 weeks on experimental diets indicated that the animals fed the low corn oil or low Menhaden oil diets consumed about 12–13% more food than those fed the high corn oil or high Menhaden oil diets. There was no difference in food intake between low corn oil and low Menhaden oil groups or among high corn oil and high Menhaden oil groups. Except for the number of calories from fat in the diet, the intakes of protein, vitamins, minerals, non-nutritive fiber, and total calories were similar in all dietary groups.

Tumor Incidences. Table 3 summarizes the AOM-induced large intestinal tumor incidence and multiplicity in animals fed various diets. There was no evidence of tumor incidence in vehicle-treated animals. Large intestinal tumor incidence (number of animals with tumors) and large intestinal tumor multiplicity (number of adenomas and adenocarcinomas/animal) were significantly lower in animals fed low and high Menhaden oil diets and the low corn oil diet than in animals fed the high corn oil diet. The incidence of large intestinal tumors did not differ significantly among the groups fed low and high Menhaden oil diets and the low corn oil diet. There was no statistically significant difference in the multiplicity of adenomas and adenocarcinomas between the groups fed the low and high Menhaden oil diets.

Table 4 shows the AOM-induced tumor incidence in small intestine and ear duct. Tumors of the small intestine were adenomas and adenocarcinomas, whereas tumors of the ear duct were squamous cell carcinomas. Small intestinal tumors were all localized in the duodenum. Low and high Menhaden oil diets or low and high corn oil diets had no significant effect on small intestinal and ear duct tumor incidences.

DISCUSSION

The results of the present study not only confirm our previous study in female rats (14) that a diet containing high corn oil significantly increased the AOM-induced large intestinal tumor incidence and multiplicity compared to a low corn oil diet but extends our observation that a high Menhaden oil diet had no tumor enhancing effect in the large intestine compared to a high corn oil diet. We are not aware of any previous study of a potential large intestinal tumor inhibitory effect by a fish oil diet. Recent studies demonstrated that diets containing 20% Menhaden oil induced fewer 7,12-dimethylbenz(a)anthracene- or methyl nitrosourea-induced mammary tumors, as well as produced a significant reduction of the development of both the size and number of L-azaserine-induced preneoplastic lesions in the pancreas when compared to a diet containing 20% corn oil (25, 26, 28).

The lack of large bowel tumor promoting effect of high dietary Menhaden oil observed in this study and that of high dietary olive oil, coconut oil, and trans-fat observed in our previous study (11, 14), in contrast to that of high dietary corn oil, safflower oil, beef fat, and lard (3, 8) suggests that the fatty acid composition of a dietary fat is one of the determining factors in large bowel carcinogenesis. It has been demonstrated that the excretory pattern of fecal secondary bile acids, namely deoxycholic acid and lithocholic acid, which have been shown to act as large bowel tumor promoters, positively correlated with large bowel tumor incidence in animal models fed various types and amounts of dietary fat (35). Although the present study was not designed to address this aspect of the influence of dietary fish oil on colonic secondary bile acids, it is likely that high dietary fish oil may have an inhibitory effect on the colonic concentration of secondary bile acids. In addition, we should not rule out the possibility that the effect of different types of fat on large bowel carcinogenesis might be mediated by the active products of essential fatty acids such as prosta-
COLON TUMOR INHIBITION BY FISH OIL

Table 2 Body weights of male F344 rats treated with AOM or vehicle and fed the experimental diets

<table>
<thead>
<tr>
<th>Diet group</th>
<th>No. of rats at start of experiment</th>
<th>Initial wt. (week 0)</th>
<th>Body wt. (g) on experimental diets at week:</th>
<th>37 (at termination)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOM-treated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Menhaden oil</td>
<td>24</td>
<td>39 ± 5e</td>
<td>185 ± 11</td>
<td>262 ± 12</td>
</tr>
<tr>
<td>High Menhaden oil</td>
<td>24</td>
<td>40 ± 4</td>
<td>180 ± 11</td>
<td>246 ± 16</td>
</tr>
<tr>
<td>Low corn oil</td>
<td>24</td>
<td>41 ± 4</td>
<td>179 ± 9</td>
<td>258 ± 7</td>
</tr>
<tr>
<td>High corn oil</td>
<td>24</td>
<td>40 ± 4</td>
<td>184 ± 11</td>
<td>273 ± 18</td>
</tr>
<tr>
<td>Vehicle-treated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Menhaden oil</td>
<td>12</td>
<td>38 ± 3</td>
<td>190 ± 7</td>
<td>280 ± 10</td>
</tr>
<tr>
<td>High Menhaden oil</td>
<td>12</td>
<td>40 ± 3</td>
<td>187 ± 15</td>
<td>268 ± 17</td>
</tr>
<tr>
<td>Low corn oil</td>
<td>12</td>
<td>41 ± 5</td>
<td>195 ± 11</td>
<td>286 ± 11</td>
</tr>
<tr>
<td>High corn oil</td>
<td>12</td>
<td>41 ± 5</td>
<td>201 ± 10</td>
<td>281 ± 18</td>
</tr>
<tr>
<td></td>
<td>* Mean ± SD.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 AOM-induced large bowel tumors in male F344 rats fed the diets containing low and high amounts of Menhaden fish oil or corn oil

<table>
<thead>
<tr>
<th>Diet group</th>
<th>Total no. of animals</th>
<th>Tumor incidence (animals with large bowel tumors)</th>
<th>Tumor multiplicity (large bowel tumors/animal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOM-treated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Menhaden oil</td>
<td>24</td>
<td>12(50)b</td>
<td>10(42)b</td>
</tr>
<tr>
<td>High Menhaden oil</td>
<td>24</td>
<td>8(33)b</td>
<td>5(21)b</td>
</tr>
<tr>
<td>Low corn oil</td>
<td>24</td>
<td>13(54)b</td>
<td>11(46)b</td>
</tr>
<tr>
<td>High corn oil</td>
<td>24</td>
<td>22(92)f</td>
<td>19(79)f</td>
</tr>
<tr>
<td>Vehicle-treated</td>
<td>48</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>* Mean ± SD.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 AOM-induced tumor incidences in male F344 rats fed the diets containing low and high amounts of Menhaden fish oil or corn oil diets

<table>
<thead>
<tr>
<th>Small intestinal tumors</th>
<th>Diet group</th>
<th>% of animals with tumors</th>
<th>Tumors/animal</th>
<th>% of animals with ear duct tumors</th>
<th>Tumors/ear duct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Menhaden oil</td>
<td>25*</td>
<td>0.29 ± 0.55e</td>
<td>8°</td>
<td>0.46 ± 0.59e</td>
<td>1.00 ± 0.38e</td>
</tr>
<tr>
<td>High Menhaden oil</td>
<td>17°</td>
<td>0.17 ± 0.38e</td>
<td>0°</td>
<td>0.21 ± 0.41e</td>
<td>0.38 ± 0.39°</td>
</tr>
<tr>
<td>Low corn oil</td>
<td>25*</td>
<td>0.33 ± 0.54e</td>
<td>8°</td>
<td>0.54 ± 0.42°</td>
<td>1.00 ± 0.44°</td>
</tr>
<tr>
<td>High corn oil</td>
<td>25*</td>
<td>0.38 ± 0.58e</td>
<td>12°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Means in the same column that do not share a common superscript are significantly different at P < 0.05 (χ2 test and Student’s t-test).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Mean ± SD.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

glandins, since recent studies demonstrated an inhibitory effect of certain prostaglandin synthesis inhibitors (indomethacin) on chemically induced large bowel carcinogenesis in rats (36, 37). In the present study, low and high Menhaden oil diets and low and high corn oil diets contained, respectively, about 0.6, 1.0, 2.8, and 13.2% linoleic acid, a precursor for prostaglandin synthesis. Eicosapentaenoic acid present in Menhaden oil has been shown to be a competitive inhibitor of cyclooxygenase, which is the first enzyme in the synthesis of prostaglandins (38). Docosahexaenoic acid present in Menhaden fish oil exerts an inhibitory effect on the metabolism of arachidonic acid and thus inhibits synthesis of dienoic prostaglandins (39). It is possible that the lack of a large bowel tumor promoting effect by Menhaden oil might be due to its inhibitory effect on prostaglandin synthesis as proposed for mammary carcinogenesis (23).

The question also arises as to whether the lack of a large bowel tumor promoting effect of high Menhaden oil diet might be related to the weight loss. Although the food intake was not measured throughout the study, calorie intake measured during 12 and 22 weeks on the experimental diets was similar in all dietary groups. Although a difference in body weights as much as 30% in animals fed various experimental diets did not correlate with large bowel tumor incidence in our previous study (40), it is possible that diminished weight gain in animals fed the high Menhaden oil diet may have contributed to reduced tumor incidence. Additional studies are needed for a better understanding of the overall effect of marine oils in large bowel carcinogenesis.

In conclusion, the present study demonstrates that high dietary Menhaden oil (a) induces fewer large bowel tumors than did the diet containing high corn oil and (2) does not promote large bowel carcinogenesis to any greater extent than does a diet containing either low Menhaden oil or low corn oil.

ACKNOWLEDGMENTS

We thank Jeff Rigotty and Yves M. Louis for expert technical assistance, Arlene Banow for preparation of the manuscript, and Anthony Bimbo of Zapata Haynie Corporation, Reedville, VA, for donating Menhaden fish oil.

REFERENCES

COLON TUMOR INHIBITION BY FISH OIL

Effect of Dietary Fish Oil on Azoxymethane-induced Colon Carcinogenesis in Male F344 Rats

Bandaru S. Reddy and Hiroshi Maruyama

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/46/7/3367

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.