Serotherapy of Primary Rat Mammary Carcinoma:
Inhibition by Ethylenedinitrilotetraacetic Acid but not by
[Ethylenebis(oxyethylenenitrilo)]tetraacetic Acid

K. Nakanishi, B. Zbar, T. Borsos, and G. Glenn

INTRODUCTION

We (1) and others (2) have described inhibition of growth of primary rat mammary carcinomas after infusions of tumor-bearer plasma absorbed with Protein A-Sepharose or inactivated CNBr Sepharose. Absorbed plasmas were depleted of the third component of complement (C3) (other complement components defined similarly) and C5 but not C1, C4, or C2. These results suggested that activation of the alternative pathway of complement might be involved in the observed antitumor effects. To test this concept sera were treated with ethylenedinitrilotetraacetic acid or [ethylenebis(oxyethylenenitrilo)]tetraacetic acid before absorption with Protein A-Sepharose. Ethylenedinitritotetraacetic acid, by chelating calcium and magnesium, prevents activation of both the alternative and classical complement pathways. [Ethylenebis(oxyethylenenitrilo)]tetraacetic acid, by chelating calcium but not magnesium, permits activation of the alternative pathway but inhibits activation of the classical complement pathway. Sera in the presence or absence of chelating agent were absorbed with Protein A-Sepharose twice at room temperature. After absorption calcium was added to the sera. Rats were treated by i.v. injection of sera twice a week for 2 weeks. Measurements of tumor size were made weekly for 6-7 weeks and then tumor weight was determined. Groups were compared both for size of index and total tumors. The results can be summarized as follows: (a) tumor-bearer sera before absorption did not inhibit the growth of rat primary mammary carcinomas; (b) tumor-bearer sera after absorption with Protein A-Sepharose showed significant consumption of C3 and did inhibit tumor growth; (c) tumor-bearer sera in the presence of ethylenedinitriotetraacetic acid did not show a decrease in C3 functional activity and did not inhibit tumor growth; (d) tumor-bearer sera in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid did show a decrease in C3 functional activity and did inhibit tumor growth; (e) sera from normal adult female rats after absorption with Protein A-Sepharose did inhibit tumor growth. The results are consistent with a role for the alternative pathway of complement in the inhibition of growth of rat primary mammary carcinomas observed after treatment with absorbed sera.

MATERIALS AND METHODS

Animals. Four-week-old female Buffalo/N rats were obtained from Charles River Laboratories, Kingston, NY, through the Animal Genetics and Production Branch, Division of Cancer Treatment, and housed at the National Cancer Institute-Frederick Cancer Research Facility, Frederick, MD. The animals were caged in groups of two and maintained on a diet of Purina laboratory chow checkers and tap water, which was available to animals at all times. Sera from rats lacked antibodies to Sendai virus.

Induction of Mammary Tumors. N-Nitrosourea (ICN Pharmaceuticals, Plainview, NY) (2.25 mg/100 g body weight for initial experiments; 3 mg/100 g body weight for subsequent experiments) was injected i.v. into 50-day-old female rats. (The carcinogen contained 25% stabilizing material.)

Allocation of Rats into Experimental Groups. Starting 3 months after injection of carcinogen, rats were examined for the presence of mammary tumors. Rats with single mammary tumors were entered into therapy experiments 1-2 weeks after detection of tumors. (Rats entered into experiments had received carcinogen 3-4 months before therapy.) From rats ranked in order of increasing tumor size, animals were organized in sets of three. From each set of three animals, rats were randomly distributed among three experimental groups. Each experimental group contained eight animals. The mean tumor volume at the start of treatment in a representative experiment (Fig. 4) was 420 mm3 ± 20 (SE). All rats were entered into treatment at the same time.

Received 1/13/86; revised 3/21/86; accepted 4/28/86.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The abbreviations used are: C3, third component of complement (other complement components defined similarly); ACD, anticoagulant citrate dextrose solution; EGTA, ethylenebis(oxyethylenenitrilo)tetraacetic acid; HBSS, Hanks' buffered salt solution without calcium or magnesium.

CANCER RESEARCH 46, 3886-3890, August 1986
Absorption of Plasma and Sera. Protein A-Sepharose was obtained from Pharmacia Fine Chemicals, Uppsala, Sweden. Protein A-Sepharose (1.5 g) was swollen with HBSS without calcium or magnesium (15 ml) for 30 min at room temperature. The gel suspension was washed twice with 15 ml of HBSS (900 g, 5 min, room temperature) resuspended in HBSS, and then used for absorption of plasma or sera. Blood was collected from anesthetized rats by cardiac puncture. For experiments with plasma, blood was anticoagulated with ACD (1, 3). For experiments with serum, blood was allowed to clot overnight at 4°C; then serum was separated by centrifugation at 1650 × g for 15 min. Sera were kept at −70°C until the day of absorption. On the day of treatment, sera or plasma (5 ml) was absorbed in 15-ml conical centrifuge tubes with Protein A-Sepharose (55 mg). Absorptions were performed at room temperature on a rocking platform for 1 h. Fluids were removed after centrifugation at 900 × g for 5 min and admixed with fresh absorbent for 1 additional h. Absorbed sera or plasma were filtered through a 0.45 micron filter (Millex-HA, Millipore Corp., Bedford, MA 01730) before injection. Tumor-bearing sera or plasma was obtained from rats with mammary tumors at least 30 mm in diameter.

Chelating Agents. EDTA (S-311; Fisher Scientific Company, Fair Lawn, NJ 07410) and EGTA (E-4378; Sigma Chemical Company, St. Louis, MO 63178) were prepared as 100 mM stock solutions (pH 7.6). One volume of stock chelating agent (0.5 ml) was added to 9 volumes of sera or plasma (4.5 ml). CaCl₂ was prepared as a 100 mM stock solution. Just before injection, absorbed sera containing chelating agents were recalcified by the addition of 1 volume of stock CaCl₂ solution to 9 volumes of sera or plasma.

Titration of Functionally Active Rat C3. The conditions for titrations of rat C3 are given in Ref. 3.

Treatment. Rats were treated by infusion into the tail vein of sera of plasma twice a week for 2 weeks. The dose of sera or plasma is given in the legends to Figs. 1–5. To facilitate i.v. injection rats were anesthetized by inhalation of methoxyflurane (Metofane; Pitman Moore, Washington Crossing, NJ 08560) and oxygen delivered by a veterinary anesthesia machine (Heidbrink; Ohio Medical Products, Madison, WI 53707). Control rats were treated by injection of HBSS (2.5 ml).

Measurements of Tumor Size. Three dimensions of tumors were measured with a vernier caliper. The volume of the tumor was calculated according to the equation

\[\text{Tumor volume} = \frac{\pi}{6} (D1 + D2 + D3 - 0.9)^{3/2} \]

Tumors were measured once a week for 7 weeks in experiments 1–3 and for 5 weeks in experiments 3–6. Each week significance of the data was assessed with the Mann Whitney U test by comparing median index and median cumulative tumor volumes of the control group with median tumor volumes in treated groups. The index tumor was defined as the mammary tumor present in the rat at time of entry into the study. Subsequently arising tumors were defined as mammary tumors detected after rats were entered into the study. Cumulative tumor volume for an individual rat was the sum of the volume of the index tumor plus the volumes of subsequently arising tumors. The data were further evaluated by use of a modified version (MUDIFT) of the method of Koziol et al. (5) and Koziol (6) for comparing groups of animals at different points in time. On day 35 or 50 rats were killed and tumors were weighed. At the end of the experiment significance was tested by comparing index tumors and other subsequently arising tumors of the experimental and control groups. Regression analyses were performed to determine if measurements of tumor volume correlated with tumor weight. Comparisons of median tumor size of subsequently arising tumors were performed for some experiments.

RESULTS

The first experiment was performed to confirm previously published observations (1, 2) on the effects of treatment with absorbed tumor-bearer plasmas on growth of primary rat mammary tumors. The results (Fig. 1) indicate that injection of tumor-bearer plasma absorbed with Protein A-Sepharose inhibited tumor growth as evaluated either by serial measurements of index (Fig. 1A) or cumulative tumor volume (Fig. 1B).

In immunochemical studies (3) of plasma absorbed with Sepharose derivatives we found that the substance used to anticoagulate the blood had a profound effect on C3 consumption and might in turn influence the efficacy of plasma transfer therapy. Of particular importance was the variability of C3 consumption in blood anticoagulated with ACD. When Mg²⁺ was added to blood anticoagulated with ACD, complete C3 consumption occurred. These results suggested that if serum could substitute for plasma, results of treatment might be more consistent and subsequent experiments with chelating agents would be simpler to interpret. Accordingly, rats with primary rat mammary carcinoma were treated with HBSS, with tumor-bearer sera absorbed with Protein A-Sepharose, or with tumor-bearer sera not absorbed with Protein A-Sepharose. The results (Fig. 2) indicate that absorbed tumor-bearer sera inhibited tumor growth. The tumor growth curve of rats treated with absorbed tumor-bearer sera was significantly different (P = 0.006) from that of control animals and animals treated with nonabsorbed sera (modified Koziol analysis) (Fig. 2A). The growth curve of rats treated with nonabsorbed sera was not significantly different (P = 0.27) from that of control animals (Fig. 2A).

Compounds that chelate Mg²⁺ inhibit activation of the alternative pathway of complement. To determine whether activation of the alternative pathway of complement during absorption with Protein A-Sepharose correlated with antitumor activity, sera were pretreated with EDTA before absorption and administration to rats. In agreement with previous observations (3), functionally active C3 was depleted in sera absorbed with Protein A-Sepharose; C3 depletion did not occur in sera pretreated with EDTA (10 mM) (Table 1). Because sera containing EDTA (10 mM) killed one of three treated rats, sera (containing chelating agents) were recalcified after absorption and before

Fig. 1. Inhibition of growth of primary rat mammary carcinomas after infusion of tumor-bearer plasma absorbed with Protein A-Sepharose. A, median index tumor volume; B, median cumulative tumor volume; O, Group A, HBSS; ●, Group B, tumor-bearer plasma absorbed with Protein A-Sepharose. Dose per treatment: Group A, 2.0 ml HBSS; Group B, 1.2 ml absorbed plasma plus 0.8 ml HBSS (from diluent trapped in absorbent). In this and all subsequent figs., median tumor volume of each group is plotted versus time after the first i.v. treatment. •, median tumor volume at that time was significantly different (P < 0.05) from the control group; numbers within figs., median tumor weight at the end of the experiment; * next to the number for median tumor weight, median tumor weight was significantly different (P < 0.05) from the control. The results of the Koziol analysis were as follows: A, Group B versus Group A, P = 0.026; B, Group B versus Group A, P = 0.019.

Fig. 2. Tumor-bearing rats were treated with either plasma or sera absorbed with Protein A-Sepharose, or with tumor-bearer sera not absorbed with Protein A-Sepharose. The results (Fig. 2) indicate that absorbed tumor-bearer sera inhibited tumor growth. The tumor growth curve of rats treated with absorbed tumor-bearer sera was significantly different (P = 0.006) from that of control animals and animals treated with nonabsorbed sera (modified Koziol analysis) (Fig. 2A). The growth curve of rats treated with nonabsorbed sera was not significantly different (P = 0.27) from that of control animals (Fig. 2A).
SEROTHERAPY OF RAT MAMMARY CARCINOMA

Fig. 2. Inhibition of growth of primary rat mammary carcinomas after infusion of tumor-bearer sera absorbed with Protein A-Sepharose. A, median index tumor volume; B, median cumulative tumor volume; O, Group A, HBSS; @, Group B, tumor-bearer sera absorbed with Protein A-Sepharose; □, Group C, nonabsorbed sera. Dose per treatment: Group A, 2.0 ml HBSS; Group B, 2.0 ml nonabsorbed sera; Group C, 1.2 ml absorbed serum plus 0.8 ml HBSS. *+, at that time tumor size in Group B was significantly different from tumor size in Group C. Results of Kozioł analysis for A were: Group A versus Group B, P = 0.0057; Group B versus Group C, P = 0.027; for B: Group A versus Group B, P = 0.0015; Group B versus Group C, P = 0.0027; Group C versus Group A, P = 0.08; for B: Group A versus Group B, P = 0.00097; Group B versus Group C, P = 0.012; Group A versus Group C, P = 0.054. For explanation of single and double * and numbers within figs., see legend to Figs. 1 and 2.

Table 1 C3 content of tumor-bearer sera before and after absorption with Protein A-Sepharose

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Serum pretreatment</th>
<th>Before absorption</th>
<th>After absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>None</td>
<td>9.694 ± 334</td>
<td><600 (0)</td>
</tr>
<tr>
<td>3</td>
<td>EDTA</td>
<td>8.828 ± 678</td>
<td>10.531 ± 1,029</td>
</tr>
<tr>
<td>4</td>
<td>EGTA</td>
<td>8.885 ± 369</td>
<td><600 (0)</td>
</tr>
</tbody>
</table>

* Mean ± SE for four rats.

administration to rats. No deaths were observed in rats given injections of recalciﬁed sera containing chelating agents. Addition of Ca²⁺ to absorbed sera did not change the titer of functionally active C3 (data not shown). The results (Fig. 3) indicate that EDTA inhibited generation of sera with ability to inhibit the growth of primary rat mammary tumors. The tumor growth curve of rats treated with EDTA-treated sera absorbed with Protein A-Sepharose was not significantly different (P = 0.08) from that of control animals (Fig. 3A). The tumor growth curve of tumor-bearer sera absorbed with Protein A-Sepharose was significantly (P = 0.002) different from that of control animals (Fig. 3A).

EGTA, by chelating Ca²⁺ to a greater degree than Mg²⁺, inhibits the classical but not the alternative pathway of complement. Pretreatment of sera with EGTA before absorption would test whether chelation of Ca²⁺ or Mg²⁺ interfered with generation of antitumor activity in sera. Both untreated sera and sera treated with EGTA showed pronounced depletion of functionally active C3 (Table 1). EGTA-treated sera absorbed with Protein A-Sepharose inhibited tumor growth as assessed by measurement of index or cumulative tumor volume (Fig. 4). The tumor growth curve of rats treated with EGTA-treated sera absorbed with Protein A-Sepharose was signiﬁcantly different (P = 0.007) from that of control animals (Fig. 4A). In this experiment sera not treated with EGTA but absorbed with Protein A-Sepharose inhibited tumor growth as assessed by measurement of cumulative tumor volume (P = 0.05) (Fig. 4B) but did not show statistically significant inhibition of growth of index tumor volume (P = 0.08) (Fig. 4A).

Although experiments with plasma indicated that plasma from non-tumor-bearing rats did not inhibit primary tumor growth (1) we reinvestigated this question by absorbing sera from normal adult female Buffalo/N rats and administering these sera to rats with primary rat mammary tumors. The results (Fig. 5) indicate that sera from normal adult female Buffalo/N rats inhibited tumor growth as evaluated by measurement of index or cumulative tumor volumes. Ray et al. (7) found that the plasma from normal rats absorbed with nonviable Staphylococcus aureus Cowan I cells inhibited growth of mammary tumors. To compare the results of serotherapy with a treatment known to have antitumor effects in rats with primary mammary cancer, female Buffalo/N rats with primary mammary cancers were treated by oophorectomy. The results (Fig. 6) indicate that oophorectomy led to reduction in size of established rat mammary tumors.
SEROTHERAPY OF RAT MAMMARY CARCINOMA

Fig. 4. Generation of antitumor activity using EGTA in sera during absorption with Protein A-Sepharose. A, median index tumor volume; B, median cumulative tumor volume; O, Group A, HBSS; •, Group B, tumor-bearer sera absorbed with Protein A-Sepharose; □, Group C, tumor-bearer sera treated with EGTA before absorption with Protein A-Sepharose. Dose per treatment: Group A, 2.0 ml HBSS; Group B, 1.2 ml absorbed sera plus 0.8 ml HBSS; Group C, 1.2 ml absorbed sera plus 0.9 ml HBSS plus 0.13 ml EGTA (100 mM) plus 0.25 ml CaCl₂ (100 mM). The results of Koziol analysis for A were: Group A versus Group B, P = 0.084; Group B versus Group C, P = 0.44; Group C versus Group A, P = 0.0074; for B: Group A versus Group B, P = 0.047; Group B versus C, P = 0.92; Group A versus C, P = 0.0094. For explanation of * and numbers within fig., see legend to Fig. 1.

Index and median cumulative tumor volume in treated rats. There was, however, no reduction in median tumor volume of the "subsequently arising" tumors (data not shown). This result indicates that the primary effect of treatment is on the index tumor.

Fig. 5. Comparison of the ability of sera from tumor-bearer and tumor-free Buffalo/N rats to inhibit the growth of primary mammary adenocarcinomas. A, median index tumor volume; B, median cumulative tumor volume; O, Group A, HBSS; •, Group B, tumor-bearer sera absorbed with Protein A-Sepharose; □, Group C, normal sera absorbed with Protein A-Sepharose. Dose per treatment: Group A, 2.5 ml HBSS; Group B, 1.5 ml absorbed sera plus 1.0 ml HBSS; Group C, 1.5 ml absorbed tumor-bearer sera plus 1.0 ml HBSS. The results of Koziol analysis for A were: Group A versus Group B, P = 0.001; Group A versus C, P = 0.002; Group B versus C, P = 0.25; for B: Group A versus Group B, P = 0.001; Group A versus C, P = 0.001; Group B versus Group C, P = 0.78. For explanation of * and numbers within fig., see legend to Fig. 1.

DISCUSSION

There are four major observations in this report: (a) inhibition of growth of primary rat mammary tumors by serotherapy was a reproducible observation; (b) the antitumor effect was generated from absorbed plasma or sera; (c) absorbed sera from tumor-bearing or tumor-free adult female Buffalo/N rats were effective in treatment; (d) generation of antitumor activity in sera during absorption with Protein A-Sepharose was inhibited by EDTA but not by EGTA.

The observations presented in this report may be viewed in the context of previous observations with this animal model. The initial observation (1) was that administration of tumor-bearer plasma absorbed with Protein A-Sepharose or inactivated CNBr Sepharose inhibited the growth of primary mammary tumors. Administration of unabsorbed plasma did not inhibit mammary tumor growth. There was no inhibition of growth by administration of quantities of endotoxin calculated to be present in the absorbent. In vitro analyses (3) showed that C3 and C5 were consumed during absorption of tumor-bearer or normal plasma with inactivated CNBr Sepharose or Protein A-Sepharose. The anticoagulant ACD had a major effect on C3 consumption. Increasing quantities of ACD were associated with decreasing C3 consumption. Addition of Mg²⁺ (10 mM) to plasma anticoagulated with ACD augmented C3 consumption. These observations indicated that Mg²⁺ concentration limited C3 consumption in plasmas anticoagulated with ACD. To more rigorously link Mg²⁺ to the activation of blood factors, sera were absorbed in the presence or absence of chelating agents known to bind Ca²⁺ and Mg²⁺ or to preferentially bind Ca²⁺.

The data in this report demonstrate that activation of the antitumor factors during absorption is inhibited by EDTA but not by EGTA. The differential effect of these two chelating agents on generation of the factor(s) indicates that activation of the antitumor factor is dependent on Mg²⁺. The specific requirement for Mg²⁺ for generation of antitumor activity during absorption strongly suggests that activation of the alternative pathway of complement is involved in the observed antitumor effects. This conclusion is supported by the following observations: (a) the alternative pathway of complement is...
known to be activated during absorption of rat plasmas or sera with Sepharose derivatives (3); (b) inhibition of activation of the alternative pathway of complement by EDTA inhibits generation of sera with antitumor activity. These data suggest that one or more of the complement proteins altered during activation of the alternative pathway may have antitumor activity in vivo.

Whether the antitumor effect of absorbed sera is mediated directly by assembly of complement components on the mammary tumor cell membrane, through effects on tumor microvasculature, through leukocytes mobilized at the tumor site, or some other mechanism is the subject for future investigation. There is precedent for cell death mediated by assembly of the alternative pathway of complement on the surfaces of Raji tumor cells (8). Potent vasoconstrictive materials are generated during activation of the alternative pathway of complement (9).

Our interpretation of these results bear similarities to those of Cooper and Masinello (10) and Cooper and Sim (11). These workers treated mice having B16 melanoma cells in the peritoneal cavity by i.p. injection of sera absorbed with fixed S. aureus cells or Protein A-Sepharose. Sera from mice, guinea pigs, rabbits, and humans contained a precursor that could be activated by absorption to express antimalanoma activity. Both the precursor and product were labile at 0°C. This factor was present in some but not all partially purified preparations of human C1. In subsequent work (11) i.p. injection of purified preparations of human C3b, human C3 (H2O), cobra venom factor, or guinea pig C3 (H2O) led to inhibition of growth of the B16 melanomas. These authors concluded that substances that activate the alternative pathway of complement in mice have antimalanoma activity.

The syndrome of respiratory distress that occurs in some patients subjected to hemodialysis of fresh cuprophone dialysis membranes may be relevant (12, 13). The syndrome of respiratory distress occurring during hemodialysis has been linked to activation of the alternative pathway of complement in anticoagulated blood perfused over the new cuprophone membranes. Infusion of blood containing activated complement components leads to sequestration of leukocytes in the lungs of treated patients. Common pathophysiological mechanisms might underlie pulmonary toxicity associated with activation of the alternative pathway of complement and the inhibition of tumor growth observed in patients treated by infusion of absorbed plasmas.

Inhibition of growth of primary rat mammary carcinomas by treatment with absorbed plasmas was relatively weak. In treated rats median index or median cumulative tumor weight 35 or 50 days after beginning treatment was reduced 2- to 4-fold compared to controls treated with HBSS. In contrast, bilateral oophorectomy, a treatment known to inhibit the growth of primary rat mammary tumors (14), caused tumor regression and reduced median tumor weight 40- to 50-fold. Further attempts to optimize serotherapy in this animal model are needed. Consideration will be given to use of cobra venom factor and purified rat complement components. Absorption of sera at 0°C (a procedure suggested by Cooper (10) to preserve antitumor activity) may be important. Little is known about the optimal dose and schedule of serotherapy in this model.

ACKNOWLEDGMENTS

We thank Charles Riggs for statistical analyses.

REFERENCES

Serotherapy of Primary Rat Mammary Carcinoma: Inhibition by Ethylenedinitrilotetraacetic Acid but not by [Ethylenebis(oxyethylenenitrilo)]tetraacetic Acid

K. Nakanishi, B. Zbar, T. Borsos, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/46/8/3886

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.