Transient and Stable Complementation of Ultraviolet Repair in Xeroderma Pigmentosum Cells by the denV Gene of Bacteriophage T4

Kristoffer Valerie, Anthony P. Green, Jon K. de Riel, and Earl E. Henderson

Fels Research Institute [K. V., J. K. d. R., E. E. H.] and Department of Microbiology and Immunology [A. P. G., E. E. H.], Temple University School of Medicine, Philadelphia, Pennsylvania 19140

ABSTRACT

In this paper we report both transient and stable complementation of pyrimidine dimer repair in xeroderma pigmentosum cells by the denV gene of bacteriophage T4, coding for endonuclease V, a dimer-specific DNA glycosylase. Cotransfection with pRSVdenV in SV40-transformed XP12RO(M1) cells (complementation group A) restored transient expression of an indicator plasmid (pRSVcat) bearing a UV-inactivated chloramphenicol acetyltransferase (cat) gene. In addition, XP12RO(M1) clones stably transformed by pRSVdenV-SVgpt expressed transient chloramphenicol acetyltransferase activity when transfected with UV-inactivated pRSVcat plasmid. These clones also showed partial restoration of colony forming ability and excision repair synthesis after UV irradiation. Immunofluorescence, using an endonuclease V polyclonal antibody, showed the presence of the phage glycosylase in stably transformed xeroderma pigmentosum cells. The cotransfection assay affords a rapid, sensitive procedure to screen for functional cloned DNA repair genes and to test mutant cells for the deficiency of specific steps in DNA repair, such as incision.

INTRODUCTION

XP is an autosomal inherited disease characterized by extreme sensitivity to the UV component of sunlight and by multiple cutaneous neoplasms (for review, see Ref. 1). Cultured cells derived from XP patients are defective in initiation of DNA repair at UV-damaged sites such as cyclobutane pyrimidine dimers, resulting in increased cell death (2), elevated frequencies of mutation (3), and malignant transformation (4) following exposure to UV. The human DNA repair complex responsible for repair at UV damage sites, like the Uvr ABC excinuclease complex of Escherichia coli, has broad specificity for distorted helix structures, including several forms of UV damage (5). The complexity of the initial incision step may be inferred from the identification of at least nine distinct XP complementation groups which are defective in incision (1, 5). In contrast, T4 endonuclease V, a pyrimidine dimer-DNA glycosylase with an associated apyrimidinic endonuclease activity, has the capacity to initiate DNA repair as a single enzyme by incising specifically at pyrimidine dimers (6, 7). In vitro as well as in vivo studies have shown that XP cells are able to carry out excision repair of dimers initiated by endonuclease V (8, 9, 10).

To create a pyrimidine dimer-specific repair system in XP cells, we placed the denV gene (11) linked to the RSV LTR into the selection vector pSV2gpt (12), containing the E. coli xanthine-guanine phosphoribosyl transferase (gpt) gene under transcriptional control of the SV40 early gene promoter. Selection for the gpt gene allows for the advantageous coselection of stable denV transformants in the absence of UV. We chose as our target cells the well characterized XP12RO(M1) cell line, an SV40-transformed XP fibroblast cell line (complementation group A) which permits mycophenolic acid (MAX) selection for the gpt gene (12, 13), and as control cells the SV40-transformed human fibroblast line GM637A.

MATERIALS AND METHODS

Plasmids and Cell Lines. Plasmid pRSVdenV contains the RSV LTR of pRSVcat (14) on a 578-base pair Ndel-Hincl fragment followed by 6 base pairs (AGCTTG) from the HindIII-SphI linker of pEMBL19 (15), the 457-base pair Klenow filled-in Clal fragment of pdenV-SVgpt (16), and 11 base pairs (CGACTCTAGAG) from the Accl-BamHI linker of pSP65 (Promega Biotech, Madison, WI), cloned into the ~4.5-kilobase BglII-Ndel fragment from pSV2hr (17), containing the SV40 large T splice and polyadenylic acid signals, as well as portions of pBR322. The denV gene and junctions of pRSVdenV were sequenced and confirmed to be intact by Maxam and Gilbert chemical cleavage (18). The plasmid pRSVdenV-SVgpt (see Fig. 1) was constructed by ligating the ~5.1-kilobase Ndel-PstI fragment of pSV2gpt (12) to the ~1.9-kilobase Ndel-BamHI (Klenow filled-in) fragment of pRSVdenV. pRSVcat plasmid was obtained from B. Howard and K. Kraemer. The XP12RO(M1) cell line was obtained from B. Royer-Pokora and GM637A from the National Institute of General Medical Sciences Cell Repository, Camden, NJ. The cells were maintained in Dulbecco's modified essential medium plus 10% fetal calf serum and antibiotics. For MAX selection, the medium was supplemented with hypoxanthine (15 µg/ml), thymidine (10 µg/ml), mycophenolic acid (25 µg/ml), aminopterin (42 µg/ml), and xanthine (250 µg/ml). All cells used in this study were tested and found to be negative for Mycoplasma.

Enzymes and Chemicals. Restriction endonucleases, T4 DNA ligase, and DNA polymerases were purchased from New England Biolabs, Bethesda Research Laboratories or Boehringer-Mannheim Biochemicals and used as directed by the manufacturer. All chemicals were from Sigma (St. Louis, MO) or CalBiochem (La Jolla, CA) unless otherwise noted.

Host Cell Reactivation. Transfection was performed using calcium phosphate/DNA precipitates as described (19, 20) with ~10 µg of control or UV-irradiated (800 J/m2) carrier-free plasmid DNA per 60-mm plate and incubation for ~40 h. CAT activity in crude cell lysates was determined by the procedure of Gorman et al. (21) with 4 mm acetyl-CoA-enzyme A and 2–5 µCi of [14C]chloramphenicol (New England Nuclear)/ml. The reactions were incubated at 37°C for 1 h before extraction with ethyl acetate. Acetylated metabolites of [14C]chloramphenicol were separated from the parent compound by ascending thin-layer chromatography (chloroform:methanol, 95:5), located by autoradiography, and quantitated by scintillation counting. Specific activity was expressed as a percentage of total cpm per µg protein. Protein concentration was determined by the Bio-Rad assay. Percentage of reactivation was calculated as the CAT activity obtained with UV-irradiated plasmid divided by the activity obtained with control plasmid x100. As positive control for the CAT assay we used a crude protein extract of E. coli MM294 carrying the plasmid pBR328 (Cm', Amp', Tet') containing Tn9.

Detection of denV DNA in XP Cells. DNA (~10 µg) isolated from fibroblasts were fractionated on a 1.0% agarose gel. The DNA was
containing 1-o-arabinofuranosylcytosine (10 mM), and lysed directly on a 5-30% sucrose gradient (pH 12.1) prior to sedimentation (45 min; described (23)). Briefly, cells were labeled for 24 h (0.10 μCi/ml; 52 Ci/m mole), irradiated with 10 J/m², incubated for 1 h in fresh medium dialyzing, and processing as above. After rebanding, the gradients were processed for absorbance at 260 nm and for trichloroacetic acid-precipitable radioactivity.

Immediately, 3H-thymidine (52 Ci/mmol) (ICN, Irvine, CA) was separated by isopyknic sedimentation in neutral cesium chloride gradients with peak absorbance.

Fractions with peak absorbance were rebanded by pooling the fractions, then phenol extracted and dialyzed. Solid cesium chloride was added for an additional 3 h, harvested, and resuspended in 0.15 M NaCl/0.015 M sodium citrate. The suspension was sequentially treated with 0.2% sodium dodecyl sulfate, ribonuclease A, and proteinase K, and then phenol extracted and dialyzed. Solid cesium chloride was added to give a final density of 1.7 g/ml, followed by hydrodynamic shearing by five successive passages through a 22-gauge syringe needle. The samples were centrifuged for 60 h in a Beckman SW50.1 rotor at 30,000 rpm and 25°C. Gradients were collected from the bottom, and the fractions were analyzed for absorbance at 260 nm. Five fractions with the highest absorbance were rebanded by pooling the fractions, dialyzing, and processing as above. After rebanding, the gradients were processed for absorbance at 260 nm and for trichloroacetic acid-precipitable radioactivity. Specific activities were calculated from the five fractions with peak absorbance.

Measurement of Excision Repair. Replicated and unreplicated DNA was separated by isopycnic sedimentation in neutral cesium chloride gradients essentially as described (22). Cells were preincubated in 5-bromodeoxyuridine (10 μg/ml) for 30 min, then UV-irradiated with 40 J/m². Immediately, [methyl-3H]thymidine (52 Ci/mmol) (ICN, Irvine, CA) was added to the medium (10 μCi/ml), and the cells were incubated for an additional 3 h, harvested, and resuspended in 0.15 M NaCl/0.015 M sodium citrate. The suspension was sequentially treated with 0.2% sodium dodecyl sulfate, ribonuclease A, and proteinase K, and then phenol extracted and dialyzed. Solid cesium chloride was added to give a final density of 1.7 g/ml, followed by hydrodynamic shearing by five successive passages through a 22-gauge syringe needle. The samples were centrifuged for 60 h in a Beckman SW50.1 rotor at 30,000 rpm and 25°C. Gradients were collected from the bottom, and the fractions were analyzed for absorbance at 260 nm. Five fractions with the highest absorbance were rebanded by pooling the fractions, dialyzing, and processing as above. After rebanding, the gradients were processed for absorbance at 260 nm and for trichloroacetic acid-precipitable radioactivity. Specific activities were calculated from the five fractions with peak absorbance.

Measurement of Incision Activity. Incising activity was measured as described (23). Briefly, cells were labeled for 24 h (0.10 μCi/ml; 52 Ci/mmol), irradiated with 10 J/m², incubated for 1 h in fresh medium containing 1-O-D-arabinofuranosylcytosine (10 μM), and lysed directly for 5–30% sucrose gradient (pH 12.1) prior to sedimentation (45 min; 25,000 rpm) in an SW50.1 rotor. Fractions were collected from the bottom and analyzed for trichloroacetic acid-precipitable radioactivity.

Uniquely labeled T4 DNA was used as a size marker.

RESULTS

Transient Complementation of UV Repair. Initially we tested the effectiveness of the denV gene product in repairing UV damage in vivo by measuring the ability of normal GM637A or XP12RO(M1) cells to express transient CAT activity after transfection with UV-irradiated pRSVcat (19) alone or together with unirradiated pRSVdenV. XP12RO(M1) cells were less efficient at expressing CAT activity from unirradiated pRSVcat than were the normal control cells. As expected, UV irradiation (800 J/m²) of pRSVcat prior to transfection led to a relatively modest decrease in CAT expression in GM637A (~38%) but resulted in a dramatic decrease in CAT activity in XP12RO(M1) cells (~93%) in line with what has been reported earlier for XP (A) cells (19). Cotransfection with a 2:1 or 3:1 molecular ratio of unirradiated pRSVdenV to UV-irradiated pRSVcat resulted in restoration of 26 and 93%, respectively, of the CAT activity obtained from the unirradiated pRSVcat transfection (Fig. 2).

Stable Complementation of UV Repair. Stable pRSVdenV-SVgpt transfectants of XP12RO(M1) were obtained by transfecting 10⁶ cells with ~10 μg of pRSVdenV-SVgpt (see Fig. 1) by the calcium phosphate precipitation method of Graham and van der Eb (20) and after 1-day replating in MAX selective medium (12). MAX-resistant colonies were expanded and tested for ability to reactivate UV-irradiated pRSVcat (Fig. 2). A majority of the seven tested MAX-resistant clones showed significantly higher CAT activity than the parent XP12RO(M1) cells (Fig. 2). Three clones (clones 5, 10, and I-A5) restored CAT activity close to the level observed after transfection of parental XP12RO(M1) cells with unirradiated pRSVcat.

Detection of denV DNA and Protein. A Southern blot of cellular DNA from clone 5 confirmed the presence of pRSVdenV-SVgpt (Fig. 3A). An EcoRI digest of DNA from clone 5 resulted in the appearance of a ~400-base pair fragment corresponding to the 383-base pair RSV-denV sequence (see Fig. 1) and a fragment larger than 4 kilobases, indicating the association of the denV sequences with higher-molecular-

![Fig. 1. Map of pRSVdenV-SVgpt (~7.0 kilobases). Restriction enzymes: N, NdeI; E, EcoRI; H, HindIII; X, XhoI; B, BamHI; P, PvuII; amp', ampicillin resistance gene.](attachment:image1.png)

![Fig. 2. CAT assay of normal, XP, and transformed cell lines. Cm, chloramphenicol; Ac-Cm, acetylated chloramphenicol; * not determined. The percentage of reactivation was calculated as described in "Materials and Methods."](attachment:image2.png)
T4 endoV GENE EXPRESSION IN XP CELLS

Fig. 3. A, Southern blot of parent and pRSVdenV-SVgpt-transformed XP fibroblasts. Lanes a and c contain XP12RO(M1) DNA; lanes b and d contain DNA of pRSVdenV-SVgpt clone 5/XP12RO(M1). Lanes a and b, EcoRI; lanes c and d, BamHI-XhoI. kb, kilobase. B, immunofluorescent detection of endonuclease V in stably transformed clones. The fluorescent cells were visualized under a Zeiss Universal microscope. a, XP12RO(M1); b, pRSVdenV-SVgpt clone 5/XP12RO(M1); c, pRSVdenV-SVgpt clone 9/XP12RO(M1); d, pRSVdenV-SVgpt clone 10/XP12RO(M1). × 500.

Fig. 4. Survival curves of normal, XP, and pRSVdenV-SVgpt-transformed XP fibroblasts. D, GM637A; ●, XP12RO(M1); ○, pRSVdenV-SVgpt clone 5/XP12RO(M1); □, pRSVdenV-SVgpt clone 9/XP12RO(M1); △, pRSVdenV-SVgpt clone 10/XP12RO(M1); □, pRSVdenV-SVgpt clone 1-B2/XP12RO(M1).

weight DNA. Clone 5 seems to contain at least two copies of the plasmid, indicated by the two doublets at ~1 and ~4 kilobases in the BamHI-XhoI digest (Fig. 3A, lane d). Similarly, clone 10 also showed the presence of denoV-specific sequences (data not shown). Indirect immunofluorescence of clones 5, 9, and 10 revealed the presence of endonuclease V protein in pRSVdenV-SVgpt containing XP cells (Fig. 3B).

Detection of T4 Endonuclease V Activity in XP Cells. To determine whether transformants which showed an ability to repair exogenous DNA were also able to incise and repair cellular DNA after UV irradiation, colony-forming ability, UV-specific DNA incision, and nucleotide excision repair were measured. Two clones (5 and 10) which had rescued CAT activity from UV-irradiated pRSVcat and one clone which was not tested for CAT activation (clone 9) had a significant increase in cell survival following UV irradiation, although not to wild-type levels (Fig. 4). D0 values were 0.37 J/m² for XP12RO(M1) and 0.99, 1.07, and 0.85 J/m² for clones 5, 9, and 10, respectively. A similar UV response was observed in a Chinese hamster ovary cell line expressing the denoV gene (23). Incomplete restoration of UV resistance is presumed to be the result of the inability of endonuclease V to recognize other kinds of UV-induced DNA damage which are removed by the endogenous repair system in normal cells. On the other hand, clone IB-2, another MAX-resistant clone obtained after transfection with pRSVdenV-SVgpt, showed no increase in UV resistance compared to the XP12RO(M1) parent line. XP12RO(M1) and clone 10 showed equal sensitivity to 4-nitroquinoline-oxide (data not shown), indicating that the endogenous mechanism for repair of bulky DNA adducts had not been reactivated in clone 10. Nucleotide excision repair replication was quantitated by measuring the specific activities of precursor nucleotide
incorporation into unreplicated DNA (24). From the shape of the curves in Fig. 5, A–C, it can be concluded that the normal cell line (GM637A) had extensive repair following UV irradiation, whereas XP12RO(M1) had greatly reduced levels of repair, consistent with complementation group A fibroblasts (22). In contrast, the XP12RO(M1)-derived UV-resistant pRSVdenV-SVgpt transformants had an extensive level of repair synthesis restored. Specific activities of UV-induced DNA repair were 26 cpm/μg for GM637A, 4 cpm/μg for XP12RO(M1), and 29, 14, and 15 cpm/μg for clones 5, 9, and 10, respectively (only the curve for clone 5 is shown in Fig. 5C). The ability to carry out the incision step was measured by assessing the accumulation of DNA strand breaks by velocity sedimentation (23). The reduction of the mean molecular weight of DNA from GM637A and clone 5 following UV-irradiation but not from XP12RO(M1) cells demonstrated that incision occurred after UV-damage in denV+ XP cells (Fig. 5, D–F).

DISCUSSION

The results presented here strongly suggest that the denV gene under control of the RSV LTR reactivates exogenously introduced DNA, extensively restores excision repair activity on endogenous DNA, and partially restores viability after UV irradiation. Therefore XP cells, like UV-sensitive mutant Chinese hamster ovary cells (23), can be genetically restored to repair competence by an exogenous DNA repair gene. The rescue of CAT activity from a UV-irradiated template in denV-transformed XP cells suggests that many of the UV-induced lesions which block cellular transcription are removed from transfected DNA. Previous results have shown that a single thymine cyclobutane dimer is sufficient to block CAT gene transcription in XP cells (19, 25). From these observations it might be concluded that endonuclease V recognizes and initiates repair of UV-induced pyrimidine dimers which are blocks to transcription, while leaving behind some lethal UV-induced lesions. These conclusions are in agreement with what is known about the biological effects of pyrimidine dimers and (6-4) pyrimidine-pyrimidone photoproducts (26), neither of which are efficiently removed by XP cells (27). Alternatively, restoration of UV survival may be hampered by inefficiency in a subsequent step in the repair of endonuclease V-induced single strand breaks. It might be possible to test this notion with an endonuclease V which retains its pyrimidine dimer-DNA glycosylase activity but has lost the AP endonuclease activity through site-specific mutagenesis, allowing endogenous AP endonucleases (28) to carry out strand breakage.

Although T4 endonuclease V cannot remove all UV-induced lethal lesions, it has an advantage over other repair systems for the study of cyclobutane dimer repair in mammalian cells due to its apparent ability to gain access to DNA within chromatin (9, 10, 23).

The cotransfection assay used in this study affords a rapid sensitive screen for the presence and function of a cloned DNA repair gene, which correlates well with repair capability measured by standard criteria and can be performed on bulk transfected cell populations. This minimizes the risk of selection artifacts that accompanies the study of stable transformants. Using the cotransfection assay in conjunction with a cloned DNA repair gene of known function, it should also be possible to assay mutant cells for deficiency in a specific step in DNA repair.

ACKNOWLEDGMENTS

The authors wish to thank B. Royer-Pokora for the XP12RO(M1) cells, B. Howard and K. Kraemer for the pRSV-cat plasmid, and Greg Harvey for typing the manuscript.

REFERENCES

13. Royer-Pokora, B., Peterson, W. D., Jr., and Haseltine, W. A. Biological and

Transient and Stable Complementation of Ultraviolet Repair in Xeroderma Pigmentosum Cells by the denV Gene of Bacteriophage T4

Kristoffer Valerie, Anthony P. Green, Jon K. de Riel, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/47/11/2967

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.