Age-related Changes of Natural Antitumor Resistance in Spontaneously Hypertensive Rats with T-Cell Depression

Takao Matsuoka, Noritoshi Takeichi, and Hirosi Kobayashi

ABSTRACT

We investigated the relationship between age-related changes in natural resistance and antitumor effects using a spontaneously hypertensive rat (SHR rat) strain which shows a progressive decline of the number of T-cells and their functions as a result of aging.

The growth of a weakly antigenic mammary adenocarcinoma SST-2 was significantly suppressed in SHR rats ages 2 and 3 months, whereas in SHR rats ages 1 or 8 months no suppression of the tumor growth was observed. Splenic natural killer cell activity among the SHR rats was still low at 1 month, when the T-cell function is relatively intact; it reached a maximum level at 3 months and thereafter rapidly decreased. On the other hand, the cytostatic activity of peritoneal macrophages, which is also low at 1 month and becomes high at 3 months, thereafter remained at high levels until 8 months of age. That is, the kinetics of natural killer cell activity during the aging processes runs parallel to the function of suppressing tumor growth. Treatment with anti-asialomonoganglioside antiserum abrogated the suppressive activity of SST-2 tumor growth in 3-month-old SHR rats. Treatment with double stranded RNA polyinosinate-polycytidylate, an interferon inducer, produced significant suppression of the tumor growth in SHR rats ages 3 and 8 months. These results suggest that the participation of natural killer cells is a principal effector mechanism in the suppression of SST-2 tumor growth in SHR rats ages 2 and 3 months.

INTRODUCTION

It is well known that immunoreactivity varies with increasing age (1-4). Most of the available data suggest that the principal deficit in aged mice is based on an alteration in the thymus-dependent immune system (5-8), although some age-related deficiencies in the B-cell population have also been reported (9). The immune capacity, the in vitro response to the T-cell mitogens, and the production of antibody-forming cells in response to sheep red blood cells have been shown to decline with age (10-12). It has also been reported that the thymus-independent natural resistance mediated by natural killer cells, macrophages, and polymorphonuclear leukocytes differs between young and aged animals (13-15).

We recently reported that a strain of SHR rats, which has been established as an animal model for human essential hypertension by Okamoto and Aoki (16), undergoes a progressive decline of T-cell functions owing to aging; i.e., the T-cell function remains intact at 1 month old, but after 2 months the function is rapidly depressed (17). This deficit in SHR rats is closely associated with an early appearance of a natural thymocytotoxic autoantibody (18) and a deficit in SHR rats is closely associated with an early appearance of a natural thymocytotoxic autoantibody (18) and a deficit in SHR rats ages 2 and 3 months.

MATERIALS AND METHODS

Animals. A closed colony of SHR rats was obtained from the Nippon Rat Co., Inc., Urawa, Japan, and 1- to 12-month-old male and female SHR rats were used throughout the experiments.

Tumor. A transplantable mammary adenocarcinoma (SST-2) was derived from a 6-month-old female SHR rat. This tumor is weakly antigenic and produces a high incidence of lung metastasis in SHR rats. SHR rats, 1 to 8 months old, were inoculated s.c. with 2 x 10⁶ SST-2 tumor cells/rat (minimum take dose) or 1 x 10⁶ cells/rat (sufficient take dose). After tumor cell inoculation, we measured the tumor diameter twice a week and calculated the growth rate of the tumor.

Administration of Anti-ASGM₁ Antiserum. To abolish NK cell activity, SHR rats were given i.v. injections of rabbit anti-ASGM₁ antiserum (diluted 1:20) 6 times at 5-day intervals from 1 day before the tumor cell inoculation. Control rats were treated with 1:15 dilution of normal rabbit serum.

Assay of NK Cell Activity. The killing activity of splenic NK cells was measured by means of a 4-h ⁵¹Cr release assay. Target cells, YAC-1, were prelabeled for 1 h at 37°C with ⁵¹Cr, washed three times in cold minimum essential medium, and allowed to leak for at least 1 h at 37°C in RPMI 1640 plus 10% fetal bovine serum. Appropriate numbers of spleen cells were mixed with 1 x 10⁵ ⁵¹Cr-labeled target cells and were then seeded in 96-well round bottomed microtitre plates. The plates were incubated for 4 h at 37°C and the radioactivity of the supernatant was counted in a Beckman gamma counter. The percentage of cytotoxicity was calculated as

\[
\% \text{ of specific release} = \frac{\text{Experimental release} - \text{spontaneous release}}{\text{Total release} - \text{spontaneous release}} \times 100
\]

Assay of Macrophage-mediated Cytostasis. The in vitro cytostatic activity of peritoneal macrophages was determined by using the [H]-dThd incorporation inhibition test. BMT-11 tumor cells (1 x 10⁹) in 0.2 ml of RPMI 1640 with 10% fetal bovine serum were cultivated on minimum essential medium, and allowed to leak for at least 1 h at 37°C in RPMI 1640 plus 10% fetal bovine serum. Appropriate numbers of spleen cells were mixed with 1 x 10⁶ [H]-dThd-labeled target cells and were then seeded in 96-well round bottomed microtitre plates. The plates were incubated for 4 h at 37°C and the radioactivity of the supernatant was counted in a Beckman gamma counter. Results were expressed as the mean cpm and as the percentage of inhibition of tumor cell proliferation calculated as

\[
\% \text{ of inhibition} = \frac{\text{cpm}_1 - \text{cpm}_2}{\text{cpm}_1} \times 100
\]

where \(\text{cpm}_1\) is the mean cpm in cultures with target cell alone and \(\text{cpm}_2\) is the mean cpm in cultures containing macrophages with target cells.

Administration of Poly(I)-Poly(C). Rats were given i.p. injections of 5 mg/kg poly(I)·poly(C), double strand RNA (P-L Biochemicals, Inc., Lab of Pathology, Cancer Institute, Hokkaido University School of Medicine, Sapporo 060, Japan)
Milwaukee, WI), in 0.5 ml phosphate-buffered saline 4 times at weekly intervals from 1 day before tumor cell inoculation.

RESULTS

Changes of Growth Curves of SST-2 Tumor in SHR Rats as a Result of Aging. Fig. 1 shows the growth curves of SST-2 tumor in 4 different age groups of SHR rats (10 rats/group) after s.c. inoculation of a minimum take dose of 2×10^5 tumor cells. The growth of the SST-2 tumor was strongly suppressed in 3-month-old SHR rats and was also significantly suppressed in 2-month-old rats, compared with two other groups of SHR rats ages 1 and 8 months. On the other hand, when a sufficient take dose (1 x 10^6 cells/rat) of SST-2 tumor cells was inoculated, the growth of the tumor was not suppressed in any of the groups (data not presented).

Changes of Splenic NK Cell Activity in SHR Rats as a Result of Aging. Fig. 2 shows the age-related changes of NK cell activity against YAC-1 cells in spleens of SHR rats (4-5 rats/group) ages 1-12 months as detected by 51Cr release assay. The splenic NK cell activity of SHR rats was still low at 1 month of age; it reached a maximum level at 3 months of age; after 3 months of age, however, the activity rapidly decreased.

Changes of Cytostatic Activity of Macrophages in SHR Rats by Aging. We investigated the age-related changes of cytostatic activity of macrophages in SHR rats (4-5 rats/group) ages 1-12 months by means of a $[^{3}H]$dThd incorporation inhibition test. Fig. 3 shows that the cytostatic activity of peritoneal macrophages against BMT-11 tumor cells was low in 1-month-old SHR rats but rose to a high level in 3-month-old SHR rats, thereafter it remained at high levels in SHR rats until they were 8 months old.

Effect of Treatment with Anti-ASGMγ Antiserum. Fig. 1 shows that the growth of SST-2 tumor was strongly suppressed in 3-month-old SHR rats when compared with SHR rats ages 1 and 8 months. In order to identify the effector cells active in the suppression of the tumor growth, groups of SHR rats (10 rats/group) ages 1, 3, and 8 months were given i.v. injections of anti-ASGMγ antiserum 6 times a day at 5-day intervals from 1 day before the tumor cell inoculation. The results are presented in Fig. 4. Tumor growth was markedly enhanced in the treated SHR 3-month-old rats and was also significantly enhanced in the treated 8-month-old SHR rats in its initial stages when compared with those of age-matched controls. However, no different tumor growth was observed between the 1-month-old treated and control rats.

Effect of Treatment with Poly(I)-Poly(C). Fig. 5 shows the NK activity of spleen cells obtained from SHR rats treated with poly(I)-poly(C) 1 day before the assay. The marked increase in NK activity, although modest in the treated 1-month-old SHR rats, was observed in 3- and 8-month-old treated rats when compared to nontreated age-matched controls. The effects of poly(I)-poly(C) treatment on the growth of SST-2 in SHR rats reached a maximum level at 3 months of age; after 3 months of age, however, the activity rapidly decreased.

Changes of Growth Curves of SST-2 Tumor in SHR Rats as a Result of Aging. Fig. 1 shows the growth curves of SST-2 tumor in 4 different age groups of SHR rats (10 rats/group) after s.c. inoculation of a minimum take dose of 2×10^5 tumor cells. The growth of the SST-2 tumor was strongly suppressed in 3-month-old SHR rats and was also significantly suppressed in 2-month-old rats, compared with two other groups of SHR rats ages 1 and 8 months. On the other hand, when a sufficient take dose (1 x 10^6 cells/rat) of SST-2 tumor cells was inoculated, the growth of the tumor was not suppressed in any of the groups (data not presented).

Changes of Splenic NK Cell Activity in SHR Rats as a Result of Aging. Fig. 2 shows the age-related changes of NK cell activity against YAC-1 cells in spleens of SHR rats (4-5 rats/group) ages 1-12 months as detected by 51Cr release assay. The splenic NK cell activity of SHR rats was still low at 1 month of age; it reached a maximum level at 3 months of age; after 3 months of age, however, the activity rapidly decreased.

Changes of Cytostatic Activity of Macrophages in SHR Rats by Aging. We investigated the age-related changes of cytostatic activity of macrophages in SHR rats (4-5 rats/group) ages 1-12 months by means of a $[^{3}H]$dThd incorporation inhibition test. Fig. 3 shows that the cytostatic activity of peritoneal macrophages against BMT-11 tumor cells was low in 1-month-old SHR rats but rose to a high level in 3-month-old SHR rats, thereafter it remained at high levels in SHR rats until they were 8 months old.

Effect of Treatment with Anti-ASGMγ Antiserum. Fig. 1 shows that the growth of SST-2 tumor was strongly suppressed in 3-month-old SHR rats when compared with SHR rats ages 1 and 8 months. In order to identify the effector cells active in the suppression of the tumor growth, groups of SHR rats (10 rats/group) ages 1, 3, and 8 months were given i.v. injections of anti-ASGMγ antiserum 6 times a day at 5-day intervals from 1 day before the tumor cell inoculation. The results are presented in Fig. 4. Tumor growth was markedly enhanced in the treated SHR 3-month-old rats and was also significantly enhanced in the treated 8-month-old SHR rats in its initial stages when compared with those of age-matched controls. However, no different tumor growth was observed between the 1-month-old treated and control rats.

Effect of Treatment with Poly(I)-Poly(C). Fig. 5 shows the NK activity of spleen cells obtained from SHR rats treated with poly(I)-poly(C) 1 day before the assay. The marked increase in NK activity, although modest in the treated 1-month-old SHR rats, was observed in 3- and 8-month-old treated rats when compared to nontreated age-matched controls. The effects of poly(I)-poly(C) treatment on the growth of SST-2 in SHR rats reached a maximum level at 3 months of age; after 3 months of age, however, the activity rapidly decreased.
cells in specific pathogen-free W/Fu rats is not age restricted, ever, Rees et al. (21) reported that, despite some variability, clear evidence indicates the participation of NK cells as a main effector mechanism in the suppression of SST-2 tumor growth. How this is controlled by activated NK cells, even though, owing to aging, it is difficult for the T-cell mediated immune systems to recognize weakly antigenic or nonantigenic tumors in the state of T-cell suppression. Finally, the results of the present experiment suggest that the growth of a low immunogenic tumor such as SST-2 can be controlled by activated NK cells, even though, owing to aging, it is difficult for the T-cell mediated immune systems to recognize weakly antigenic or nonantigenic tumors in the state of T-cell suppression.

ACKNOWLEDGMENTS

We are indebted to A. Meguro for expert technical and secretarial assistance and to Dr. M. Naiki, Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan, for his generous gift of the anti-asialomonoganglioside antiserum used in this study.

REFERENCES

5. Gerbase-De, L. M., Wilkinson, J., Smith, G. S., and Walford, R. L. Age-

3413
Age-related Changes of Natural Antitumor Resistance in Spontaneously Hypertensive Rats with T-Cell Depression

Takao Matsuoka, Noritoshi Takeichi and Hiroshi Kobayashi