Reversal of the Antitumor Effects of Tamoxifen by Progesterone in the 7,12-Dimethylbenzanthracene-induced Rat Mammary Carcinoma Model

Simon P. Robinson and V. Craig Jordan

Department of Human Oncology, University of Wisconsin Clinical Cancer Center, Madison, Wisconsin 53792

ABSTRACT

Coadministration of progesterone (4 mg/day) opposed the antitumor activity of tamoxifen (100 µg/day) in rats bearing 7,12-dimethylbenzanthracene-induced tumors and also prevented the inhibition by tamoxifen (50 µg/day started 30 days after 7,12-dimethylbenzanthracene administration) of tumor occurrence even after tamoxifen therapy had been established for 1 or 2 mo. Although prolonged progesterone treatment raised progesterone levels, serum total estrogen levels were not raised above control. The reversal by progesterone of the inhibition of tumor occurrence produced by tamoxifen was blocked by the antiprogestin RU 486. These results demonstrate that progesterone can reverse the tumorstatic action of tamoxifen in the 7,12-dimethylbenzanthracene-induced tumor model and that this may be via a progesterone receptor-mediated mechanism.

INTRODUCTION

The antiestrogen tamoxifen has become the antisteroidal therapy of choice for the treatment of hormone-dependent breast cancer (1). However, although tamoxifen is as effective as the previously used ablative and additive therapies (1), failure ultimately occurs, even in cases where tamoxifen has produced a long initial period of tumor remission (1). A number of possible mechanisms resulting in tumor relapse have been proposed (2), but at present the main cause remains unclear. Combinations of tamoxifen with other forms of antihormone therapy have not been shown to have any clinical advantage over tamoxifen alone (1). This suggests that, during tamoxifen therapy, tumors lose the requirement of hormone stimulation to maintain tumor growth. However, contrary to this are the reports that more than half the patients who initially respond to tamoxifen alone and subsequently relapse have objective remission following hypophysectomy, androgen therapy (3), or aminoglutethimide treatment (4, 5).

Recently the sequential use of tamoxifen and progesterin has been investigated (6, 7). The rationale for this is that tamoxifen has been observed to increase the concentration of progesterone receptors in breast tumors (8, 9) and thus may prime or sensitize the tumor to high-dose progesterin therapy.

However, the increase in progesterone receptor produced by tamoxifen could also be involved in the therapeutic failure of this antiestrogen. Low doses of progesterone have been demonstrated to produce a positive stimulus in rat mammary tumors induced by carcinogens (10, 11) or in the transplanted MTW9 carcinoma (12). Furthermore, in the mouse, progester-one has been implicated as a factor in the development of spontaneous mammary tumors during pregnancy (13, 14) and mammary tumors induced in inbred strains by hypophyseal isografts (15). The combination of estrone and progesterone has been demonstrated to induce tumors in ovariectomized GF mice, whereas neither is effective alone (16).

The progestational content of the contraceptive pill has been related to the risk of breast cancer in humans (17, 18). Although this finding is controversial (19), the combination with animal data is suggestive that progesterone may play a part in breast cancer growth.

The increase in progesterone receptor number produced by tamoxifen (6, 7) could therefore prime for endogenous progestins and result in tumor stimulation. In support of this hypothesis is the report that low doses of progestin therapy in combination with tamoxifen are less effective for breast cancer therapy than tamoxifen alone (20). Furthermore, consistent with this hypothesis, tumors failing tamoxifen therapy would still be hormone dependent, and thus the reports of objective responses produced by other endocrine therapies (3–5) after cessation of tamoxifen treatment would be explained.

In order to investigate these observations we examined the influence of progesterone on tamoxifen therapy of mammary tumors in rats exposed to DMBA.

MATERIALS AND METHODS

DMBA and progesterone were obtained from the Sigma Chemical Company (St. Louis, MO). Tamoxifen was a gift from Stuart Pharmaceuticals (Wilmington, DE), and RU 486 was a gift from Roussel UCLAF (Romainville, France).

Drug administration was by s.c. injection into the loose fold of skin on the back of the neck. Progesterone and tamoxifen solutions were prepared by adding a small volume of ethanol to crystalline material and then stirring with peanut oil. The progesterone solution was warmed to aid solubility. The ethanol in the tamoxifen solution was evaporated under N2 once in solution; however, the ethanol (3 to 5%, v/v) was required in the progesterone solution to prevent crystallization.

RU 486 was prepared as a microcrystalline suspension in peanut oil which was vigorously mixed before injection. DMBA, dissolved in peanut oil by stirring overnight, was administered (20 mg in 2 ml) by gavage to 50-day-old female Sprague-Dawley rats (Harlan Sprague-Dawley, Indianapolis, IN) as previously described (21).

Progesterone Interaction with the Inhibition of Tumor Growth by Tamoxifen. Animals from a pool of rats treated with DMBA were randomly entered into 4 groups when tumors reached measurable size (diameter, >1 cm). Rats were entered into the groups between 80 and 150 days after DMBA. The 4 groups were treated daily for the duration of the experiment with (a) peanut oil, (b) 4 mg progesterone, (c) 100 µg tamoxifen, and (d) 4 mg progesterone and 100 µg tamoxifen. Tumor sizes were determined for 11 wk by caliper measurements and calculated using the formula, length/2 × width/2 × π.

Progesterone Interaction with the Inhibition of Tumor Development by Tamoxifen. Thirty days after DMBA administration, rats were randomized into groups of 25 animals. In an initial experiment 4 groups were treated daily with (e) peanut oil alone, (f) 4 mg progesterone, (g) 50 µg tamoxifen, and (h) 4 mg progesterone and 50 µg tamoxifen. Treatment was given for about 12 wk. Animals were palpated at weekly intervals. Groups g and h were followed for about 16 wk after treatment stopped.

In a further study, 4 groups were treated daily with peanut oil alone (i) or containing 50 µg tamoxifen (j, k, and l). After 1 mo, Group j

Received 5/6/87; revised 7/22/87; accepted 7/24/87.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported through the generosity of the Wisconsin Clinical Cancer Center Anderson Fund.

2 To whom requests for reprints should be addressed, at Department of Human Oncology, Wisconsin Clinical Cancer Center, 600 Highland Ave., Madison, WI 53792.

The abbreviation used is: DMBA, 7,12-dimethylbenzanthracene.
received additional treatment with 4 mg progesterone. After 2 mo, Group A received additional treatment with 4 mg progesterone. Animals were palpated at weekly intervals.

The Influence of an Antiprogestin on Progesterone Interaction with
the Inhibition of Tumor Development by Tamoxifen. Thirty days after
DMBA administration, 100 rats were randomized into 4 groups of
equal size and treated with peanut oil alone (m) or containing 50 µg
tamoxifen (n, o, and p). After 1 mo, Group o received additional
treatment with 4 mg progesterone, and Group p received additional
treatment with 4 mg progesterone and 5 mg RU 486. Animals were
palpated at weekly intervals to detect tumors.

Hormone Levels and Uterine Weights. Circulating hormone levels
and uterine weights were measured in rats chronically treated (approx-
imately 12 wk) with peanut oil, tamoxifen (50 µg/day), or tamoxifen
(50 µg/day) and progesterone (4 mg/day). Blood samples were taken
approximately 4 h after the final injection by ether anesthesia and
bleeding from the abdominal aorta regardless of the stage in the estrus
cycle. Blood was allowed to clot overnight at 4°C and then centrifuged
at 2000 × g, and the serum was removed and stored at −20°C until
analyzed. Progesterone and total estrogen measurements were made
using commercially available radioimmunoassays designed for human
samples. Progesterone was measured on 50-µl serum samples by the
progesterone coat-a-count (Diagnostic Products, Los Angeles, CA),
ovariectomized rat serum was used as a test control, and spiked samples
were used to validate the assay (data not shown). Total estrogen
measurements were made on 300-µl serum samples using RSL 125I-
labeled total estrogen radioimmunoassay (Radioassay Systems Labo-
ratories, Inc., Carson, CA). This assay had a low standard of 5 pg/ml,
and the intraassay variation at 53 pg/ml was given as a coefficient of
variation of 5.5%.

Statistical Analysis. The rate of change of tumor size between groups
was analyzed using analysis of variance decomposition (22). The Stu-
dent t test was used for other comparisons. Significance was recognized
if P < 0.05.

RESULTS

Progesterone Interaction with the Inhibition of Tumor Growth
by Tamoxifen. The administration of tamoxifen (100 µg/day)
to tumor-bearing rats produced a reduction in tumors to <20%
of their initial size in 10 of 15 tumors and stasis of growth in a
further 3 tumors (see Fig. 1C). This contrasts to the peanut oil-
treated control animals in which only 5 of 16 tumors noticeably
decreased in size, and the majority of tumors grew (see Fig.
1A). In the progesterone-treated group a similar pattern of
tumor progression to that of the control group was observed
but with fewer regressing tumors (see Fig. 1B). The combina-
tions of tamoxifen and progesterone produced a tumor response
midway between the tamoxifen alone- and progesterone alone-
treated groups. Tumor regression in the combined treatment
group not only occurred in fewer tumors than that of the
tamoxifen alone group (8 of 18), but also their regression was
less rapid. Furthermore, 7 of the 18 tumors grew very rapidly
(see Fig. 1D). Analysis of the rate of change of tumor size
(change in size divided by time span from assignment to ne-
cropsy) between treatment groups using analysis of variance
decomposition shows a significant interaction between tamoxi-
fen and progesterone (P < 0.05) with progesterone partially
reversing the tumor regression produced by tamoxifen.

Progesterone Interaction with the Inhibition of Tumor Devel-
opment by Tamoxifen. The treatment with progesterone (4 mg/ day)
30 days after DMBA administration resulted in more (see Fig.
2) and larger tumors (see Fig. 3) developing in the following
8 wk than in the control group. In contrast, tamoxifen (50 µg/
day) treatment over this same period almost totally prevented
tumor occurrence and development (see Figs. 2 and 3). The
tumor burden in the tamoxifen-treated group was significantly
different after 8 wk of treatment when compared to control (P
< 0.0001). This antitumor action of tamoxifen was reversed by
the simultaneous administration of progesterone which resulted
in significantly (P < 0.01) more and larger tumors per rat (see
Figs. 2 and 3) and more rats developing tumors than the
tamoxifen alone group.

Cessation of tamoxifen treatment alone after 13 wk resulted
in a loss of the protective antitumor action and the development
of tumors over the next 16 wk (see Fig. 2). Similarly, stopping
progesterone combined with tamoxifen resulted in tumor de-
Fig. 2. Effect of tamoxifen and progesterone treatment alone or in combination on the occurrence of rat mammary tumor induced by DMBA. Rats were administered DMBA 30 days prior to drug treatment. Groups of 25 animals were injected (s.c.) daily with tamoxifen (50 µg; □), progesterone (4 mg; ▪), or tamoxifen (50 µg) and progesterone (4 mg; •). All drugs were given separately in peanut oil (0.1 ml). Control (○) animals received peanut oil alone. Tumor burden was calculated as the number of tumors per group divided by the number of rats. Treatment period is indicated by the hatched box. Treatment was stopped in the tamoxifen and tamoxifen plus progesterone groups at the time indicated by the arrow.

Weeks from Start of Treatment

Development, although a greater mean tumor burden per animal was observed by wk 28. However, the animal number in the combined treatment group was less (14 animals at wk 28) than the tamoxifen alone group (20 animals at wk 28) due to animal loss resulting from the earlier development of tumors in this group.

The reversal of the inhibitory action of tamoxifen (50 µg/day) on tumor growth by progesterone (4 mg/day) not only occurred if the drug administration was started concurrently but also was observed if progesterone (4 mg/day) was administered when tamoxifen (50 µg/day) treatment had been established for 1 or 2 mo (see Fig. 4). The addition of progesterone after 1 mo of tamoxifen therapy caused not only a significantly ($P < 0.001$) greater mean tumor burden but also an increase in the number of rats bearing tumors from <20% of the group to >80% of the animals over the following 70 days. A similar response was seen if progesterone treatment was started 2 mo after tamoxifen therapy had commenced.

Examination of uterine weights in chronically treated rats showed that progesterone treatment caused significant ($P < 0.05$) inhibition of uterine weight compared to the peanut oil-treated control group. This reduction in uterine weight with progesterone was to the same extent as in the tamoxifen- and progesterone-treated group (see Table 1). The circulating levels of progesterone produced in these intact rats treated with progesterone (4 mg/day) were about 3 times the levels measured in control animals (see Table 1). Total estrogen (estrone plus estradiol) levels were similar in control and progesterone groups and slightly lower in the tamoxifen- and progesterone-treated group (see Table 1).

Fig. 3. Tumor sizes 8 wk after the start of treatment on animals described in Fig. 2. Tumors that were too small to measure (<1 cm2) were classified descriptively. Tumor numbers in each group are shown in brackets. CONT., control; PROG., progesterone; TAM., tamoxifen.

Influence of an Antiprogestin on the Interaction of Progesterone on the Inhibition of Tumor Development by Tamoxifen. The administration of tamoxifen for 1 mo established a therapy that prevented tumor formation. As previously shown the coadministration of progesterone reversed the inhibition. The further addition of the antiprogestin, RU 486 (5 mg/day), was significant ($P < 0.05$) in preventing the reversal by progesterone (4 mg/day) of the antitumor action of tamoxifen (50 µg/day) after 6 wk of treatment (see Fig. 5). This prevention of tumor formation by RU 486 was to a level slightly but not significantly below that of tamoxifen alone.

DISCUSSION

The inhibition of DMBA tumor induction and growth by tamoxifen is well documented (23). Similarly, this model has been used extensively in studies of progesterone action on mammary tumors (24, 25). This was, therefore, a useful model to investigate the hypothesis that progesterone may reverse the antitumor action of tamoxifen.

The findings, that tumor regression and the protection against tumor development by tamoxifen treatment were partially reversed by the coadministration of progesterone, support this hypothesis. However, the mechanism behind the reversal of the antitumor activity of tamoxifen by progesterone is unclear.

Previously, Jabara (24) demonstrated progesterone treatment caused the development of DMBA tumors in rats earlier than
as the number of tumors per group divided by the number of rats. Arrows indicate with progesterone (4 mg; •). All drugs were given separately in peanut oil (0.1 ml). Control (O) animals received peanut oil alone. Tumor burden was calculated as the number of tumors per group divided by the number of rats. Arrow indicates the time at which progesterone treatment was commenced in the combined treatment groups.

Table 1 Serum hormone levels and uterine weights taken from animals following daily treatment with agents for 12 wk

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total Estrogen (estrone + estradiol) (pg/ml)</th>
<th>Progesterone (ng/ml)</th>
<th>Uterine wt (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n = 7)</td>
<td>44.4 ± 4.4*</td>
<td>27.4 ± 7.0</td>
<td>411.4 ± 39.8</td>
</tr>
<tr>
<td>Progesterone (n = 7)</td>
<td>44.6 ± 2.8</td>
<td>80.6 ± 6.6</td>
<td>167.0 ± 10.8</td>
</tr>
<tr>
<td>Tamoxifen + progesterone</td>
<td>33.6 ± 6.7</td>
<td>79.2 ± 5.8</td>
<td>160.0 ± 11.0</td>
</tr>
</tbody>
</table>

* Mean ± SE.

In control animals and produced a faster rate of tumor growth. Similar findings were observed in this study (Fig. 2). We reasoned that the promotion of tumor growth by progesterone may result in tumors undergoing rapid development before tamoxifen treatment has attained sufficient control of tumor growth. This possibility was addressed and dismissed by the study of the influence of progesterone on tumor initiation following established tamoxifen therapy (1 and 2 mo). These findings clearly demonstrate that progesterone was acting in the presence of sufficient tamoxifen to prevent tumor development.

While reversing the tumorstatic action of tamoxifen in the mammary gland progesterone acted as an estrogen antagonist in its reduction of uterine wet weight. This type of effect on uterine tissue has previously been noted and related to estrogen receptor regulation (26). The inhibitory action of progesterone in the uterus may explain why combination with tamoxifen did not stimulate growth of this tissue to that of the control group (see Table 1) or above the uterine wet weight produced by tamoxifen treatment alone (data not shown).

Ovarian and adrenal enzymes can convert progesterone to androgens, and either ovarian or peripheral aromatization could produce estrogens. Raised circulating estrogen levels resulting from progesterone administration could thereby reverse tamoxifen action. The measurement of hormone levels in chronically treated animals argues against this and shows that, while progesterone treatment has raised circulating levels of progesterone above the range seen in the rat at peak proestrus (27), the levels of total estrogens were not raised above control. In addition, the slightly lower total estrogen levels measured in animals treated with both progesterone and tamoxifen are inconsistent with estrogen formation being responsible for the reversal of the antitumor action of tamoxifen.

The original hypothesis of progesterone reversal of the antitumor action of tamoxifen required progesterone to influence tumor growth by cellular activation via the progesterone receptor. Evidence supporting the reversal of the antitumor action of tamoxifen by progesterone being via progesterone receptor activation was obtained using the antiprogestin RU 486 to prevent this effect. However, although this argues in favor of a progesterone receptor-mediated reversal, RU 486 is not selective and has considerable antiglucocorticoid activity and moderate antiandrogen activity, and it produces a variety of endocrine-related responses (28) which may also play a role. Furthermore, this does not exclude the possibility that progesterone is influencing tumor growth by receptor binding at sites distant to the tumor. A single injection of progesterone (10 mg) has been demonstrated to induce pseudopregnancy in female rats.
cancer cells in culture. These cells are known to contain a high
and results in a period of increased prolactin production (29).
Since DMBA-induced tumors are prolactin dependent (30), the
raised levels of prolactin may result in increased tumor growth.
However, Kelly et al. (31) reported that chronic progesterone
(4 mg/day) treatment of rats did not significantly change circu-
larizing prolactin levels or the number of prolactin receptors
on DMBA-induced tumors. The treatment did, however, cause
an increase in the early incidence of these tumors.
Overall, the findings demonstrate that progesterone can re-
verse the tumoristic actions of tamoxifen in this model and
that this is possibly through progesterone receptor activation.
How this may relate to the failure of tamoxifen in the human
disease is uncertain; however, these findings suggest that the
use of low doses of progestational agents in patients receiving
tamoxifen therapy may be inappropriate.
Indeed, following the submission of this paper for publication
Hissom and Moore (32) demonstrated the activity of the pro-
gestin, R5020, to stimulate the growth of T47D human breast
cancer cells in culture. These cells are known to contain a high
level of progesterone receptor (33).

REFERENCES
1. Furr, B. J. A., and Jordan, V. C. The pharmacology and clinical uses of
2. Jordan, V. C., Robinson, S. P., and Welshons, W. V. Resistance to anti-
endocrine therapy and chemotherapy in metastatic breast cancer: effects on
patients: the Melbourne experience. Cancer Res., 42, (suppl.): 3437s–3441s,
1982.
after tamoxifen therapy in advanced breast cancer: M. D. Anderson Hospital
6. Robustelli della cuna, G., Pavesi, L., and Preti, P. Tamoxifen/medroxypro-
gesterone acetate sequential treatment for advanced breast cancer. Anti-
ostrogens in oncology/past, present, and prospects. Excerpta Med. Int.
7. Pouillart, P., Palangie, T., Jouve, M., Garcia-Giralt, E., Magdelenat, H., and
Martin, P. M. Sequential administration of tamoxifen and medroxyproges-
8. Namer, M., Lalanne, C., and Baulieu, E. E. Increase of progesterone receptor
by tamoxifen as a hormonal challenge test in breast cancer. Cancer Res., 40:
10. Cantarow, W., Stansey, J., and Paschikas, K. E. The influence of sex hormones
on mammary tumors induced by 2-acetaminofluorene. Cancer Res., 8: 412–
418, 1948.
11. Huggins, C., and Yang, N. C. Induction and extinction of mammmary cancer.
Reversal of the Antitumor Effects of Tamoxifen by Progesterone in the 7,12-Dimethylbenzanthracene-induced Rat Mammary Carcinoma Model

Simon P. Robinson and V. Craig Jordan

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/47/20/5386

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.