Blood Amino Acid Compartmentation in Mice Bearing Lewis Lung Carcinoma

Santiago Rivera, Francisco J. López-Soriano, Joaquim Azcón-Bieto, and Josep M. Argilés

ABSTRACT

Blood amino acid compartmentation between plasma and red blood cells was studied in mice bearing the Lewis lung carcinoma. The animals showed a change in compartmentation with an increase in the concentration of most amino acids in the plasmatic fraction with the exception of glycine, glutamine, aspartate, asparagine, and taurine. This work focuses on the importance of studying the distribution of amino acids in both fractions when performing studies concerning amino acid metabolism in tumor-bearing animals.

INTRODUCTION

RBC have been recognized as having an important role in the interorgan transport of several metabolites (1, 2) including amino acids (3, 4). Although plasma amino acids are generally used as an index of the amino acid-transporting ability of blood, the erythrocyte content is not always dependent on the blood levels (5). On the other hand, the quantitative importance of RBC in amino acid transport has not thus far been completely established. In addition, blood amino acid compartmentation may depend on the physiological conditions of the animal and the measurement of plasma levels underestimate the actual blood capacity for amino acid transport.

The Lewis lung carcinoma has been described as an anaplastic epidermoid carcinoma with a marked hemorrhagic tendency (6). It is basically a well-known neoplasia that has a short infectious cycle linked to a huge growth and a lung metastatic process which causes a fast death (7). The metabolic interactions between host and tumor are not yet well understood and they have received little attention compared with other aspects of tumor biochemistry (8).

The majority of studies on tumor action devote themselves to their physiological/biochemical differences, the degree of infectiousness together with the possible measures that can be used to eradicate it. However, the actual biochemical events that take place in the host have not been studied extensively. Malignant tumors compete with their host for certain amino acids and glucose to satisfy their needs; this results in a progressive hypoglycemia (9) and host hepatic glycogen depletion (10). It has also been speculated that the tumor also functions as a nitrogen trap (11) actively competing with their host for nitrogen compounds.

It was our aim to estimate blood amino acid content and distribution in the plasmatic and cellular compartment in mice bearing the Lewis lung carcinoma.

MATERIALS AND METHODS

Consanguinous C57BL/6 mice were used. The animals were kept in a light (on from 9 a.m. to 9 p.m.), temperature (21–22°C), and humidity (70–80%) controlled room. They remained housed in collective polypropylene-bottomed cages with wood shavings as absorbent material. They were fed ad libitum on AO3 type rat chow pellets (Panlab, Barcelona, Spain) and offered tap water. The tumor was inoculated via an i.m. (left thigh) injection containing \(5 \times 10^7 \) tumor cells. The Lewis lung carcinoma had been maintained by successive implantation in our laboratory. The injection resulted in the appearance of lung metastases from day 7 onward and a growth of the primary tumor at the site of the injection that attained about one-half of the gross body weight on day 25. The mice died between days 27 and 29.

Blood samples were obtained by heart puncture, using heparinized syringes, on day 0, 15, and 25 min after the injection. Blood was collected into dry heparinized plastic beakers and also into heparinized capillary tubes for hemocrit determination. The hemocrit values obtained were 43.7 ± 2.1 (SE) for controls and 26.4 ± 3.2 and 21.8 ± 1.5 for tumor-bearing mice (days 15 and 25, respectively). Plasma was separated by means of a refrigerated centrifuge. The blood pellet was resuspended in distilled water (1:4) in order to attain cellular lysis. Aliquots of plasma and resuspended cells were deproteinized with 10% (w/v) trichloroacetic acid and after centrifugal ion the clear supernatant was used for amino acid determination by means of a Chromaspek S-180 (Rank-Hilger) amino acid autoanalyzer equipped with a fluorimetric detector. Norleucine was used as an internal standard.

Blood amino acid compartmentation was calculated correcting plasma and blood levels by hemocrit values (5) as \(E = (WB - (1 - H)P)/H \), free amino acid concentrations in erythrocytes (E); free amino acid concentrations in whole blood (WB); free amino acid concentrations in plasma (P); hematocrit (H) values are expressed as a fraction. No differences in the amino acid compartmentation were observed in animals with different hemocrit. Statistical differences were calculated using Student's t test and analysis of variance computer programs.

RESULTS

Table 1 shows the whole blood amino acid concentration found in C57BL/6 mice. It is interesting to point out that the highest concentration found is that of taurine, its value in the control animals being nearly double that of glutamine. The presence of the tumor increased the whole blood concentration of alanine, glutamine, aspartate, histidine, and taurine and decreased that of asparagine, isoleucine, valine, cysteine, tyrosine, and tryptophan.

The blood amino acid compartmentation is shown in Fig. 1. The majority of amino acids are more concentrated in the plasmatic fraction with the exception of glutamate, aspartate, asparagine, and arginine. The total concentrations of amino acids in each fraction were 4013 ± 380.1 (controls), 3818.2 ± 252.4 (tumor 15) and 4158.8 ± 308.6 (tumor 25) for the cellular fraction, and 2224 ± 162.3 (controls), 2533.7 ± 363.9 (tumor 15), and 2892.6 ± 330.2 (tumor 25) for the plasmatic fraction. The presence of the tumor causes significant variations in the plasmatic concentrations of all the amino acids considered with the exception of aspartate, arginine, and ornithine. On the other hand, glycine, aspartate, taurine, and proline increased significantly their cellular concentration in tumor-bearing mice. Conversely, glutamine, asparagine, leucine, isoleucine, valine, arginine, histidine, ornithine, citrulline, tyrosine, and tryptophan decreased their concentration values in the cellular fraction with the implantation of the carcinoma while, alanine,
Table 1 Whole blood amino acid concentration and plasma/cell ratios in tumor-bearing mice

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Control (μM)</th>
<th>Tumor, 15th day (μM)</th>
<th>Tumor, 25th day (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Ratio</td>
<td>Total</td>
</tr>
<tr>
<td>Alanine</td>
<td>476.4 ± 39.2</td>
<td>1.32 ± 0.11</td>
<td>637.2 ± 65.5</td>
</tr>
<tr>
<td>Glycine</td>
<td>501.4 ± 54.3</td>
<td>1.34 ± 0.14</td>
<td>588.1 ± 54</td>
</tr>
<tr>
<td>Glutamate</td>
<td>147.0 ± 23.1</td>
<td>0.39 ± 0.06</td>
<td>153.0 ± 25.4</td>
</tr>
<tr>
<td>Glutamine</td>
<td>701.6 ± 70.0</td>
<td>1.19 ± 0.12</td>
<td>928.5 ± 79.0</td>
</tr>
<tr>
<td>Aspartate</td>
<td>222.5 ± 32.8</td>
<td>0.21 ± 0.03</td>
<td>498.2 ± 71.4</td>
</tr>
<tr>
<td>Asparagine</td>
<td>66.1 ± 8.4</td>
<td>0.78 ± 0.01</td>
<td>38.1 ± 6.7</td>
</tr>
<tr>
<td>Threonine</td>
<td>163.3 ± 20.2</td>
<td>1.66 ± 0.17</td>
<td>179.8 ± 16.8</td>
</tr>
<tr>
<td>Serine</td>
<td>161.8 ± 14.0</td>
<td>1.55 ± 0.13</td>
<td>108.1 ± 11.4</td>
</tr>
<tr>
<td>Leucine</td>
<td>272.4 ± 16.7</td>
<td>2.34 ± 0.14</td>
<td>182.0 ± 11.1</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>161.0 ± 8.8</td>
<td>2.96 ± 0.16</td>
<td>106.1 ± 6.3</td>
</tr>
<tr>
<td>Valine</td>
<td>352.0 ± 12.4</td>
<td>2.80 ± 0.10</td>
<td>239.8 ± 35.6</td>
</tr>
<tr>
<td>Lysine</td>
<td>474.0 ± 23.6</td>
<td>1.02 ± 0.05</td>
<td>472.8 ± 35.6</td>
</tr>
<tr>
<td>Arginine</td>
<td>137.4 ± 14.1</td>
<td>0.50 ± 0.05</td>
<td>121.1 ± 13.3</td>
</tr>
<tr>
<td>Histidine</td>
<td>88.4 ± 7.3</td>
<td>3.42 ± 0.28</td>
<td>91.7 ± 5.4</td>
</tr>
<tr>
<td>Ornithine</td>
<td>197.5 ± 26.2</td>
<td>10.1 ± 1.34</td>
<td>179.7 ± 25.3</td>
</tr>
<tr>
<td>Citrulline</td>
<td>162.2 ± 12.2</td>
<td>2.80 ± 0.21</td>
<td>56.8 ± 8.0</td>
</tr>
<tr>
<td>Methionine</td>
<td>61.0 ± 5.5</td>
<td>3.38 ± 0.28</td>
<td>83.1 ± 23.8</td>
</tr>
<tr>
<td>Taurine</td>
<td>1285.2 ± 93.3</td>
<td>2.86 ± 0.20</td>
<td>1361.9 ± 93.2</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>140.5 ± 9.8</td>
<td>2.03 ± 0.14</td>
<td>95.1 ± 6.5</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>62.4 ± 6.5</td>
<td>9.06 ± 0.94</td>
<td>33.9 ± 2.5</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>102.3 ± 6.7</td>
<td>5.82 ± 0.38</td>
<td>86.6 ± 5.0</td>
</tr>
<tr>
<td>Proline</td>
<td>268.8 ± 42.7</td>
<td>2.80 ± 0.10</td>
<td>151.7 ± 17.7</td>
</tr>
</tbody>
</table>

* Related to total amino acid concentrations.
a Mean ± SE. The number of animals used was 5–8 per group.
* Control versus tumor-bearing p < 0.05.
** 15th versus 25th day tumor-bearing p < 0.05.
NS, not significant.

DISCUSSION

In recent years accumulated data have indicated that glucose, and therefore pyruvate, may not be a major respiratory source for cellular energy in some tumors (12, 13) and that amino acids may play an important role in tumor cell proliferation. In fact, a substantial body of experimental evidence indicates that glutamate, lysine, methionine, and phenylalanine did not show significant variations.

Table 1 also shows the plasma/cell ratio for the different amino acids studied. Tumor-bearing mice show increased ratios for all the amino acids considered with the exceptions of glycine, glutamine, aspartate, asparagine, and taurine.

Fig. 1. Blood amino acid compartmentation in mice. Concentrations are micromolar. Open bars, controls; striped bars, day 15 after the implantation; dotted bars, day 25 after the implantation; *, control versus tumor bearing, p < 0.05; •, 15 versus 25th day tumor-bearing. ORN, ornithine; CIT, citrulline; TAU, taurine.

5645

Downloaded from cancerres.aacrjournals.org on October 29, 2017. © 1987 American Association for Cancer Research.
glutamine is a very important respiratory fuel for tumor cells. Glutamine has been shown to be an unusually good substrate for oxidation by tumor cell mitochondria (14), and intact Ehrlich cells oxidize glutamine to CO₂ at higher rates than any other amino acid present (15, 16). Indeed, the mitochondrial glutaminase activity of several rat hepatomas was linearly correlated with the growth rates and degree of malignancy (17). In addition to their role as energetic substrates, amino acids can serve as amide or amino nitrogen in reactions leading to the biosynthesis of a number of important metabolites including the pyrimidine, purine, and pyridine nucleotides and amino sugars (18).

It can be stated that tumors function as nitrogen traps and they compete with their hosts for nitrogen compounds. This process produces in the host a negative nitrogen balance, a characteristic weight loss, and a reciprocal nitrogen increase in the tumor. The biochemical mechanisms underlying these phenomena remain unclear (19). A hypothesis, based on the observation of the leucine requirements of tumor, advanced by Lazo (20) is that concentration gradients are established between the free amino acid pools, with a net flux of amino acids taking place toward the tumor cell. Similar results were reported by Fürst et al. (21) who studied the amino acid pools in several groups of cancer patients.

In vitro experiments have shown that the equilibration ratio between blood fractions is very slow (22) having been postulated that there is not a rapid amino acid exchange. However, despite these low in vitro rates of interchange between both blood pools, considerable changes are found in blood amino acid compartmentation in mammals under different physiological concentrations. In addition, it was demonstrated, however, that in vivo the equilibration between blood fractions occurs very rapidly (23). At the same time, a direct, although not well defined, interrelationship for amino acid exchange between erythrocytes and tissue cells has also been suggested.

From our results it is interesting to point out the high levels of taurine found in blood. This observation has also been reported in other animals (24, 25). The precise function of this amino acid still remains controversial it having been suggested that taurine is involved in a wide range of metabolic responses that include a functional role in membranes, calcium flux, and possibly cyclic AMP activity (26). The dramatic influx of taurine into plasma cells that takes place as tumor development progresses is a very interesting observation that unfortunately we are not able, at present, to explain. The significant rise in whole blood alanine and glutamine concentrations in tumor-bearing mice could be related to an enhanced skeletal muscle protein depletion (10, 27).

In mice, blood amino acid compartmentation follows a different pattern than that of rat where blood amino acids are more concentrated in the cellular fraction (28). Although blood amino acid compartmentation could be influenced by the type and size of tumor, in this particular case the implantation of the tumor results in an increase in the majority of plasma/cell steady state ratios, which would seem to imply either an enhanced utilization of these compounds by the mouse erythrocytes or an increased release of amino acids from the host tissues into the plasmatic fraction. This observation agrees with the general pattern of tissue protein mobilization and amino acid release found in the majority of tumor studies (21).

Although erythrocyte amino acid levels as compared to plasma levels rarely have been used in metabolic disorders in patients (29), the present study is the first one to consider blood amino acid compartmentation in tumoral situations, an interesting approach that may lead to future promising research in amino acid interchange between the tumor and the host.

REFERENCES

Blood Amino Acid Compartmentation in Mice Bearing Lewis Lung Carcinoma

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/47/21/5644

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.