Frequency and Distribution of Estrogen Receptor-positive Cells in Normal, Nonlactating Human Breast Tissue

O. W. Petersen, P. E. Høyer, and B. van Deurs

Department of Anatomy, The Panum Institute, University of Copenhagen, DK-2200, Copenhagen N [O. W. P., P. E. H., B. v. D.], and Laboratory of Tumor Endocrinology, The Fliberg Institute; DK-2100, Copenhagen Ø [O. W. P.], Denmark

ABSTRACT

We have analyzed the frequency and distribution of cells expressing estrogen receptor (ER) in cryosections of normal human breast tissue using quantitative microspectrophotometry and the estrogen receptor immunocytochemical assay. We found that the human mammary gland contained a small but distinct population of ER-positive cells, comprising approximately 7% of the total epithelial cell population from all biopsies. Stromal cells were found to be ER negative. The ER-positive cells were distributed as scattered single cells, with the highest frequency and intensity of measured staining in the lobules as compared to the interlobular ducts. Moreover, on the average, 87% of the ER-positive cells were luminal epithelial cells or occupied an intermediate position in the duct wall. The intermediate cells were found not to express basal cell phenotype as determined by combined immunocytochemistry to ER and "common acute lymphoblastic leukemia antigen" selectively decorating myoepithelial cells (B. A. Gusterson et al., J. Natl. Cancer Inst., 77: 343-349, 1986).

INTRODUCTION

No data on the frequency and distribution of estrogen receptor-positive cells in normal breast tissue are available, although ER4 obviously play a significant role in the biology of the mammary gland. Thus, the changes observed in the mammary gland during puberty, pregnancy, lactation, menopause, and menstrual cycle are all correlated to physiologically varying amounts of circulating estradiol in the blood stream (1-4). Moreover, more than 50% of malignant neoplasms arising from the breast gland epithelium are estrogen receptor positive (5). Also some risk factors for development of breast cancer, such as early menarche, late menopause, nulliparity, and giving birth to first child after the age of 30 years (6), probably reflect a life span variation in levels of circulating estrogen. These observations all strongly suggest that the normal human breast gland comprises cells with high-affinity receptors to circulating estrogen. However, it is not evident from these observations which cell type (stromal, parenchymal, or both) the ER-positive cell population is affiliated to. The aim of the present study was therefore to evaluate the immunoreactivity of an antibody to estrogen receptors in cryosections of the normal, nonlactating mammary gland using the recently introduced ER-ICA (7).

MATERIALS AND METHODS

Normal breast tissue consisted of 18 biopsy specimens removed from patients (age range, 15-59 years) undergoing reduction mammoplasty primarily due to "mammary hypertrophy" or "asymmetry." The tissue received was frozen immediately in n-hexane or isopentane cooled to -70°C in solid carbon dioxide. Up to ten sections were cut at different levels of the biopsy in a cryostat with a section thickness setting of 4 μm and a chamber temperature of -18°C.

The sections were picked up on clean uncoated glass slides and after about 30 s at room temperature (rt) transferred to 3.5% formaldehyde in 0.1 M phosphate buffer, pH 7.35, for 15 min, also at rt. Then sections were rinsed for 5 min in PBS at rt, transferred to fresh PBS at rt, and stored as such until they were all ready (maximal time, 30 min). Next, the sections were fixed for 1-3 min in methanol at -20°C followed by fixation for 1-3 min in acetone at -20°C. After a 5-min rinse in PBS at rt, they were incubated for demonstration of estrogen receptors by using the ER-ICA kit purchased from Abbott Laboratories Diagnostics Division (Vedbaek, Denmark), as recommended by the package insert. All incubations were performed at rt. Sections were incubated for 15 min with blocking reagent, 30 min with primary antibody, 30 min with bridging antibody, 30 min with peroxidase-antiperoxidase complex, and 10 min with diaminobenzidine-H2O2. All incubation steps were separated from each other by a double 5-min rinse in PBS. Sections incubated in a similar manner, except that the primary antibody was replaced by the control antibody (Abbott Diagnostics), served as controls. The frequency of estrogen receptor-positive cells in cryosections was determined after a brief (and very weak) hematoxylin staining of the ER-ICA-incubated sections, using a ×25 objective and a ×12.5 eye piece. Both ER-positive and ER-negative cells were counted. Areas with fibrocystic changes (here restricted to epithelial hyperplasia in duct walls or lobules or the appearance of cysts) were not evaluated.

In cryosections from 5 biopsy specimens, the amount of final reaction product, a polymer of oxidized diaminobenzidine, was quantified using a Vickers M85A scanning and integrating microspectrophotometer. Measurements were performed at 460 nm, which is the absorption maximum of the oxidized diaminobenzidine polymer (8). A ×40 objective, flying spot 1 (diameter, 0.5 μm in the specimen plane), and a field mask size A2 (scanning area of 78.5 μm²) were used. The size of the scanning field mask was just sufficient to encompass 1 nucleus. Generally 50 nuclei, both in lobules and interlobular ducts, were measured separately in at least 3 cryosections. To calculate the absorbance due to specific binding of primary antibody, the mean absorbance value obtained from cryosections exposed to control serum was subtracted from that obtained from consecutive sections exposed to the primary antibody of the ER-ICA kit.

In some sections, myoepithelial cells were demonstrated along with ER-positive nuclei by combined immunocytochemistry to the CALLA (9) and the ER-ICA. Sections fixed in 3.5% formaldehyde in 0.1 M phosphate buffer, pH 7.35, were incubated for 5 min at rt with PBS-NGS, followed by incubation for 30 min in PBS-NGS containing DAKO-CALLA antibody (M727, 1:50 (kindly provided by Dakopatts, Glostrup, Denmark). Then the sections were rinsed for three times for 5 min in PBS-NGS, followed by a 30-min incubation at rt in PBS-NGS containing horseradish peroxidase-conjugated goat anti-mouse IgG, 1:20 (Medac, Code 6450; Gesellschaft für klinische Spezialpraparate, mbH, Hamburg, West Germany; purchased from Pharmavit, Birkersø, Denmark). After three 5-min rinses in PBS-NGS, the sections were incubated for 30 min at rt in PBS containing 0.5 mg/ml diaminobenzidine and 0.5 μl/ml 30% H2O2. Immediately after this incubation, the sections (not allowed to dry) were further processed for the ER-ICA. No apparent loss of ER expression was recorded using this type of double incubation. To visualize some selected histological configurations for micrographs, cryosections were incubated to detect cytokeratins. A few sections were fixed for 5 min in methanol at -20°C
followed by incubation as described above for CALLA with a rabbit anti-human keratin antiserum (DAKO, Code A575) diluted 1:400 and a horseradish peroxidase-conjugated swine anti-rabbit immunoglobulin at 1:20 (DAKO).

Statistics. Since none of the data fulfilled the criteria for normal distribution, data with similar distribution were compared using the Wilcoxon rank sums tests and centered signed rank statistics. Otherwise the median 2-sample test was used. The statistics were performed using the VMS Version of SAS Release 5.03, The SAS Institute, Inc., Cary, NC.

RESULTS

By immunocytochemistry, the normal human breast tissue was found to contain estrogen receptor-positive cells in all the biopsy specimens investigated. ER-positive cells were present exclusively in parenchymal tissue, i.e., ducts and lobules (as defined in Fig. 1), whereas no staining was seen in stromal cells (Figs. 2 and 3). Positive staining was distinctly confined to the nucleus of individual cells, either as a weak central staining or as a strong staining of the entire nucleus (Figs. 2 and 3).

The staining pattern of the mammary ducts and lobules was far from homogeneous. Thus, the ER-ICA distinctly outlined two different subpopulations of mammary epithelial cells, those with, and those without nuclear estrogen receptors. The estrogen receptor-positive subpopulation comprised (the biopsies taken all together) approximately 7% of the total population of epithelial cells in the mammary ducts and lobules. These 7%
were distributed as scattered single cells or small clusters throughout mammary gland, with the highest frequency in the lobules (Table 1). Moreover, a stronger intensity of staining was generally measured in the lobules as compared to the interlobular ducts (Table 2). Both pronounced inter- and intra-individual variations in frequency and staining intensity were recorded.

The ER-positive cells of the lobules were localized in an intermediate position between luminal epithelial cells and basal epithelial cells or in a typical luminal position (Table 3; Figs. 3 and 4). Less frequently the cells were localized in a typical basal position (Table 3; Fig. 2). To determine whether the intermediate cell type belonged to the basal cell lineage, an immunocytochemical detection of CALLA [an antigen present at the lateral membrane of basal cells in the human breast gland (9)] could not be classified due to lack of specific file information. However, only one status based on file information. Patients in the age group above 50 years (n = 4) was generally measured in the lobules as compared to the throughout mammary gland, with the highest frequency in the lobules (Table 1). Moreover, a stronger intensity of staining was generally measured in the lobules as compared to the interlobular ducts (Table 2). Both pronounced inter- and intra-individual variations in frequency and staining intensity were recorded.


demonstrated by the Wilcoxon rank sums test. As seen in Fig. 4, the intermediate cell type lacked this differentiated myoepithelial feature.

The major result of the present study is the unequivocal demonstration of a small but distinct population of estrogen receptor-positive epithelial cells in the normal human mammary gland. However, some inherent limitations in the experimen-
mental approach should be considered. Thus, a part of the quantification protocol is based on simple counting of ER-positive cells by eye. The threshold of detection is therefore not well defined, and weak positive reactions may not be registered, implying that the frequency of ER-positive cells (approximately 7%) could be an underestimate. Also, the 7% ER-positive cells have not been further subclassified according to the patterns of the menstrual cycle, since this was not the object of the present study. Previous studies have shown an influence of the menstrual cycle on ER expression in the human breast gland (2). Another important problem in studies of ER expression is the material taken to represent so-called normal human breast tissue. This material is obtained from a selected group of individuals operated on primarily due to mammary hypertrophy, and it is not known to what extent this group reflects the general ("normal") female population in terms of mammary ER expression. However, reduction mammoplasty specimens represent the most widely used source of normal, nonlactating human breast tissue and, as such, should be well characterized. In doing so, it is particularly important to recognize that "normal" breast tissue may contain scattered elements of fibrocystic changes which, in their less obvious form (mild adenosis or fibrosis in the absence of cysts and epithelial hyperplasia), are difficult to discriminate from pure normality. Although in the present study several sections from distant places in the mammary glands were analyzed and compared, in order to exclude focal fibrocystic changes, it cannot be ruled out that some of the variability seen in ER expression may be accounted for by inclusion of some incidents of minor abnormal histology. This should, however, not interfere with the major result of the present study.

Application of the immunocytochemical detection of ER-positive cell populations may be of importance, for instance, in relation to short-term cultivation of human breast epithelial cells with some defined phenotypic traits (10, 11). Such work is now in progress in our laboratory.

ACKNOWLEDGMENTS

We wish to thank Dr. M. Pers, State University Hospital, Copenhagen, for providing us with breast biopsy specimens and K. Ottoersen, K. Pedersen, and B. Reiter for excellent technical assistance. We also would like to acknowledge Dr. C. Garbarsch, Department of Anatomy, for help with the statistics and for critically reading the manuscript.

REFERENCES

Frequency and Distribution of Estrogen Receptor-positive Cells in Normal, Nonlactating Human Breast Tissue

O. W. Petersen, P. E. Høyer and B. van Deurs

Cancer Res 1987;47:5748-5751.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/47/21/5748

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.