GRANTS AVAILABLE

for

Research on the Resistance of Human Tumors to Chemotherapeutic Agents

Bristol-Myers Company is pleased to announce a $16,000,000 drug resistance research funding program. The goal of this research program is to identify the mechanisms by which human tumors become resistant to chemotherapy and to develop and test methods of overcoming such resistance. Grants will be awarded in two categories. Laboratory grants will be $100,000 per year for five years. Five year grants of $200,000 per year will be awarded for research which directly tests laboratory findings in human trials.

Applications are invited from qualified investigators worldwide. Applicants may be associated with academic institutions, research institutes, government laboratories or other facilities capable of conducting these types of investigations. Applications will not be accepted from individuals affiliated with or employed in the pharmaceutical industry or engaged in for-profit research.

Applications will be accepted until January 1, 1988 and will then be reviewed by a panel of experts, independent of Bristol-Myers. Awards will be announced on or about April 1, with funding commencing July 1, 1988. Additional information about this program can be obtained by writing:

Mr. Gary Doyle
Program Coordinator
Bristol-Myers Company
5 Research Parkway
P.O. Box 5100
Wallingford, CT 06492-7660
U.S.A.

Van Duuren detected cocarcinogenic agents in tobacco tars at concentrations much higher than benzo(a)pyrene and related aromatic hydrocarbons in mouse skin experiments (J. Natl. Cancer Inst., 57: 703–705, 1973). Remarkable in their potency are catechol, pyrene, fluoranthene, and undecane. These compounds are not carcinogenic and are not tumor promoters in classical two-stage experiments. However, they markedly enhance the carcinogenicity of benzo(a)pyrene in mouse skin experiments in which carcinogen and cocarcinogen are applied repeatedly and simultaneously. In humans, the same simultaneous exposure to carcinogens and cocarcinogens occurs in cigarette smoking and is undoubtedly responsible for the enormous toll of lung cancer.

The photographs, taken during the 1950s, show Orris (left) and Van Duuren (right). The structure of benzo(a)pyrene is also shown.