Chemosensitivity Testing of Human Colorectal Carcinoma Cell Lines Using a Tetrazolium-based Colorimetric Assay

Jae-Gahb Park, Barnett S. Kramer, Seth M. Steinberg, James Carmichael, Jerry M. Collins, John D. Minna, and Adi F. Gazdar

National Cancer Institute-Navy Medical Oncology Branch, Naval Hospital, Bethesda, Maryland 20814-5105; and Biotestistics and Data Management Section, Clinical Oncology Program [S. M. S.] and Clinical Pharmacology Branch [J. M. C.], National Cancer Institute, Bethesda, Maryland 20892

ABSTRACT

The in vitro chemosensitivity of 11 human colorectal cell lines to seven chemotherapeutic agents was determined using a semiautomated tetrazolium-based colorimetric assay (MTT assay). Four of the cell lines were from primary tumors and seven from metastases. Eight lines were from patients with no prior chemotherapy. From assay results, we predict 50% inhibition was in a clinically achievable range for only two of the 11 cell lines, we performed a multivariate analysis to explore parameters which predict 5-FU sensitivity. In the best fitting model, sensitivity was positively correlated with cloning efficiency in media and with cell surface TAG-72 (a tumor-associated glycoprotein found on epithelial tumors of ovary, lung, colon, and breast origin) expression. If validated with an in vivo test such as the nude mouse model, the MTT assay could be very useful in new drug screening for colorectal carcinoma, for examining combination chemotherapy for synergy, for exploring strategies for biochemical modulation, and perhaps in individualizing therapy when cell lines can be established from a patient.

INTRODUCTION

Colorectal cancer is one of the most common malignant tumors, with a reported incidence second only to lung cancer in the U. S. An estimated 140,000 new cases will be diagnosed in 1986, and 60,000 of them will ultimately die of their disease (1).

Chemotherapy for colorectal cancer is relatively ineffective (2). It is not clear that any systemic chemotherapeutic agent increases survival in the population of patients with advanced colorectal cancer. Some have suggested that patients with metastatic colorectal carcinoma be offered experimental chemotherapy as their initial treatment, in view of the disappointing results with currently available drugs (3, 4). Since most newly identified cytotoxic agents have been ineffective in the treatment of colorectal cancer, a predictive preclinical model would be very helpful.

Animal tumor models, such as murine P388 and L1210 leukemia models predict poorly for drug activity in the common human solid tumors. Hence, a major effort is under way to explore more disease-oriented assay systems in new drug development (5). One such model is the in vitro testing of human tumor cell lines. Human tumor stem cell assays have been used, but are inconvenient (6-8). They are also plagued by technical difficulties such as cell clumping (9). Such difficulties can translate into variability in results from different laboratories (10). Moreover, cloning efficiency of some cell lines is too low for practical application of this assay (8).

Recently, the semiautomated tetrazolium-based MTT6 colorimetric assay has been used to measure cell survival and chemosensitivity (11-15). Our laboratory has reported that the assay yields results very similar to the clonogenic tumor stem cell assay using the CHO-AuxB1 cell line and the pleiotropic drug resistant CHC5 cell line (14).

We therefore used the MTT assay for 11 colorectal carcinoma cell lines established and characterized by us to investigate the relationships between the characteristics of the cell lines and the in vitro response to seven chemotherapeutic agents.

MATERIALS AND METHODS

Cell Lines and Antigen Expression. We have previously published a detailed characterization of our human colorectal carcinoma cell lines.7 They represent a wide range of morphologic phenotypes including well differentiated, moderately differentiated, poorly and undifferentiated, and mucin-producing morphology (see Table 1). As noted, four cell lines were from primary tumors and seven from metastases. Eight cell lines came from patients with no prior chemotherapy. Exponentially growing cultures of cell lines were grown in RPMI and were maintained in a humidified incubator at 37°C in an atmosphere of 5% CO2 and 95% air. For determination of colony forming efficiency in liquid medium, single cell suspensions (one cell/two wells) in RPMI medium were seeded into five replicate 96-well plates (0.2 ml/well). Growing colonies were counted 28-35 days later.

Expression of CEA (15), CA 19-9,2 and TAG-72 (16, 17) surface antigens were measured as follows: Cells (1 x 10^6) were seeded into replicate 75-cm^2 flasks (15 ml total volume) and washed x3 when semi-confluent. Three days later, cells from one flask were enumerated after trypsinization and then discarded. Cells from the other flask were harvested by using a rubber policeman, and by washing three times. They were resuspended in 1% Nonidet-P40 with 100 ¿M phenylmethylsulfonyl fluoride (approximately 5-10 ng of cellular protein/ml), sonicated twice on ice for 15 s and stored at -70°C until assayed. CEA was measured by a commercial enzyme-linked immunosorbent assay using a monoclonal antibody (Abbott Laboratories, North Chicago, IL). A sialylated Lewis A (CA 19-9) mucin antigen was determined by sandwich immunoassay using a CA 19-9 monoclonal antibody (17). TAG-72 was measured in a homologous sandwich radioimmunoassay using the B72.3 monoclonal antibody in a microtitre plate assay configuration (18, 19).

MTT Assay. Single cell suspensions were obtained by pipet disaggre-
CHEMOSENSITIVITY OF HUMAN COLORECTAL CELL LINES

Table 1 Characteristics of 11 human colorectal carcinoma cell lines

<table>
<thead>
<tr>
<th>Degree of differentiation</th>
<th>Primary tumor site</th>
<th>Cultured tumor site</th>
<th>Prior therapy</th>
<th>Cloning efficiency*</th>
<th>TAG-72 (ng/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCI-H548</td>
<td>Sigmoid</td>
<td>Primary</td>
<td>None</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NCI-H630</td>
<td>Rectum</td>
<td>Liver</td>
<td>FAM* & R*</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>NCI-H684</td>
<td>Sigmoid</td>
<td>Liver</td>
<td>None</td>
<td>0</td>
<td>3833</td>
</tr>
<tr>
<td>Moderately</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCI-H508</td>
<td>Cecum</td>
<td>Abdominal wall</td>
<td>5-FU</td>
<td>0</td>
<td>7889</td>
</tr>
<tr>
<td>NCI-H747</td>
<td>Cecum</td>
<td>Node</td>
<td>None</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SNU-C1</td>
<td>Descending</td>
<td>Peritoneum</td>
<td>None</td>
<td>8</td>
<td>1200</td>
</tr>
<tr>
<td>Poorly/undifferentiated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNU-C2A</td>
<td>Cecum</td>
<td>Primary, xenograft</td>
<td>None</td>
<td>0</td>
<td>2400</td>
</tr>
<tr>
<td>SNU-C4</td>
<td>Transverse</td>
<td>Primary, xenograft</td>
<td>None</td>
<td>1</td>
<td>800</td>
</tr>
<tr>
<td>SNU-C5</td>
<td>Cecum</td>
<td>Primary, xenograft</td>
<td>None</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>NCI-H716</td>
<td>Cecum</td>
<td>Ascites</td>
<td>5-FU</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Mucinous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCI-H498</td>
<td>Ileo-cecum</td>
<td>Peritoneum</td>
<td>None</td>
<td>0</td>
<td>250</td>
</tr>
</tbody>
</table>

* Cloning efficiency: percentage of cloning efficiency in liquid medium.

FAM, 5-fluorouracil; doxorubicin (Adriamycin), and mitomycin-C.

R, radiotherapy.

Analysis of Data. Data were key entered onto the NIH IBM mainframe computer, and sample statistics were computed for each of the seven drug concentrations used to generate a growth inhibitory curve and the descriptive variables. Tables were constructed which associated the concentrations of drugs with the other variables of interest in order to roughly characterize the association between the concentrations and the other variables. Those variables which were found to have some association with drug concentration were checked for correlation with one another (using the nonparametric Spearman rank correlation method). To avoid statistical difficulties, when two variables were found to be highly correlated with one another, one of the two (not both) was selected for use in the regression analysis. The variables that remained for further considerations were thus: (a) potentially associated with the drug concentration, and (b) relatively independent of one another. These were the variables to be used in the multiple regression modeling (22). We examined the distributional characteristics of these remaining variables and decided whether the variable itself should be included in the model, or whether a transformation was required. Several of the variables were in obvious need of transformation in order to be useful in a model—those with a range from 0 to 50,000, for example, were reasonable candidates for logarithmic transformation. Variables with values which extended from 0 to any very large number were transformed by adding 0.001 to their values before taking the logarithm in order to prevent infinitesimally small logarithms. Variables such as blood type were coded numerically to allow incorporation into the model (i.e., if blood type = A+, then blood = 1; otherwise blood = 0). Finally, models using actual concentrations, as well as logarithm of concentrations, were considered for analysis. The best model is detailed in the RESULTS section.

RESULTS

The ID₉₀ means and standard deviation for each drug are catalogued in Table 2. The cell lines are categorized according to morphology (differentiation) in tissue culture. In all 11 lines degree of differentiation in vitro correlated well with the histo-

Drug ADH drugs were prepared immediately prior to use. Other drugs were dissolved or diluted with phosphate buffered saline. All drugs were prepared immediately prior to use.

Analysis of Data. Data were key entered onto the NIH IBM mainframe computer, and sample statistics were computed for each of the seven drug concentrations used to generate a growth inhibitory curve and the descriptive variables. Tables were constructed which associated the concentrations of drugs with the other variables of interest in order to roughly characterize the association between the concentrations and the other variables. Those variables which were found to have some association with drug concentration were checked for correlation with one another (using the nonparametric Spearman rank correlation method). To avoid statistical difficulties, when two variables were found to be highly correlated with one another, one of the two (not both) was selected for use in the regression analysis. The variables that remained for further considerations were thus: (a) potentially associated with the drug concentration, and (b) relatively independent of one another. These were the variables to be used in the multiple regression modeling (22). We examined the distributional characteristics of these remaining variables and decided whether the variable itself should be included in the model, or whether a transformation was required. Several of the variables were in obvious need of transformation in order to be useful in a model—those with a range from 0 to 50,000, for example, were reasonable candidates for logarithmic transformation. Variables with values which extended from 0 to any very large number were transformed by adding 0.001 to their values before taking the logarithm in order to prevent infinitesimally small logarithms. Variables such as blood type were coded numerically to allow incorporation into the model (i.e., if blood type = A+, then blood = 1; otherwise blood = 0). Finally, models using actual concentrations, as well as logarithm of concentrations, were considered for analysis. The best model is detailed in the RESULTS section.

RESULTS

The ID₉₀ means and standard deviation for each drug are catalogued in Table 2. The cell lines are categorized according to morphology (differentiation) in tissue culture. In all 11 lines degree of differentiation in vitro correlated well with the histo-
logical differentiation of the cell lines when grown as nude mouse xenografts by s.c. passage.

Table 3 shows the ID₅₀ range of our 11 tested cell lines to the seven cytotoxic agents. For each ID₅₀ value, we calculated an approximate assay AUC as described in “Materials and Methods.” Clinically achievable AUC in humans are given for standard doses of each drug (23).

As seen in Table 3, 5-FU had the largest range in ID₅₀ from most to least sensitive cell line (388-fold) among the seven drugs tested. All other agents had a much narrower range of ID₅₀ (from 5- to 30-fold). As an example, the two extremes are presented in Fig. 1, demonstrating the striking difference between 5-FU and BCNU.

Table 3 also demonstrates that the assay AUC at ID₅₀ was well above a clinically achievable AUC for every agent except 5-FU. For 5-FU, two of the cell lines (SNU-C1 and SNU-C4) had an assay AUC within a clinically achievable range at ID₅₀.

To determine whether the results of the MTT assay are stable over a 3- to 4-month period (six passages). A multiple regression analysis was performed in an attempt to identify parameters associated with sensitivity to 5-FU. Parameters evaluated in the models included: morphology, in vitro cell doubling time, plating efficiency, cloning efficiency in semisolid media, cloning efficiency in liquid media (see Methods), cell surface CEA, cell surface TAG-72, CA 19-9, media used to establish the line (R10 versus ACL-4) (24, 25), prior chemotherapy, patient blood type, and tumor site (primary versus metastasis). The list of all variables examined for the analysis is shown in Table 4. The best fitting model was:

\[
\log_{10}(5 \text{-FU concentration}) = 1.18 - 0.106(\% \text{ cloning efficiency in media}) - 0.209(\text{TAG-72})
\]

where \(\text{TAG-72} = \log_{10}(\text{TAG-72} + 0.001)\). The \(F\) value was 15.1 with (2, 29) degrees of freedom (\(P < 0.0001\)), indicating an extremely good fit. In other words, concentration is inversely related to % cloning efficiency in media and TAG-72 antigen expression. No other models approached the above one in goodness of fit.

DISCUSSION

We have reason, on the basis of our experimental results, to predict that 5-FU would be the sole active agent of the seven tested in our cell lines and that it would be most likely active in the SNU-C1 and SNU-C4 lines. First, the range of drug concentrations which cause 50% inhibition of the cell lines (ID₅₀) is greatest for 5-FU. By contrast, the ranges of ID₅₀ for all of the agents are relatively narrow. It is much more likely that all lines are resistant to these agents than that all are sensitive. In the case of 5-FU, it is certainly possible that all lines are sensitive to 5-FU, but this may simply reflect the true clinical situation, in which a minority of patients with colorectal carcinoma respond to 5-FU (2).
CHEMOSensitivity OF HUMAN COLORECTAL CELL LINES

Fig. 1. Comparative effects of BCNU and 5-FU on colorectal carcinoma lines. Percentage of the control absorbance is plotted against the drug concentration in \(\mu \text{g/ml} \). Lines, cell lines.

human tumor stem cell assay using one hour exposure times (24).

No comment can be made on clinical response of the two patients from whom the two “sensitive” cell lines were derived. One never received chemotherapy, and the other received chemotherapy in the adjuvant setting, with no measurable tumor.

A multivariate analysis of parameters which predict in vitro 5-FU sensitivity produced one well-fitting model, which identified a positive correlation between chemosensitivity and cloning efficiency in media as well as cellular expression of TAG-72. The fact that cloning efficiency in media correlates well with sensitivity to 5-FU reasonably suggests that those lines with greatest stem cell proliferation capacity are most susceptible to attack on DNA synthesis. The TAG-72 is an antigen found on carcinoma cells of ovary, lung, colon, and breast. Its function is not known but it appears to reflect a more malignant phenotype of epithelium (27). Others, using the human tumor stem cell assay, have noted a similar relationship between sensitivity of human colorectal carcinoma cells to 5-FU and high proliferative potential (28). It is of interest that in a recent pilot study of the combination N-phosphonacetyl-L-aspartate, thymidine, and 5-FU in colorectal carcinoma, the response rate was felt to be particularly high in the subset of patients with anaplastic histology (29).

As more cell lines are accumulated the model derived from this multivariate analysis can be tested for generalizability. If it does apply to more cell lines and drugs, the model may help predict which lines are susceptible to systemic agents.

The MTT assay is well suited to the testing of characterized cell lines, and therefore could be useful in a disease-oriented screening program. There is not a priori reason to assume that clonogenic assays more accurately reflect in vivo drug activity than nonclonogenic assays such as the MTT test (9). In any case, results using the two assays are similar. A semiautomated assay such as the MTT may even become a useful tool in testing combinations of chemotherapeutic agents for synergy. Using human lung cancer lives we have demonstrated synergy between...
drugs commonly used in the therapy of small cell lung cancer.

The utility of the above applications of the MTT assay, of course, hinges on the correlation of the assay with in vivo tumor sensitivity. It is of interest that the assay predicts 5-FU to be the most active agent overall in our cell lines, since 5-FU is the most widely used drug for colorectal carcinoma in the clinic. However, it would be important to validate the results with an in vivo assay, since it is not known how well the in vitro drug concentration and AUC correspond to clinical pharmacodynamics. For this reason, plans are underway to validate the in vitro results in nude mouse allografts of our human cell lines.

REFERENCES

Chemosensitivity Testing of Human Colorectal Carcinoma Cell Lines Using a Tetrazolium-based Colorimetric Assay

Jae-Gahb Park, Barnett S. Kramer, Seth M. Steinberg, et al.

Updated version
Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/47/22/5875

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.