Antineuroblastoma Activity of Desferoxamine in Human Cell Lines

Julie Blatt and Suzette Stitely

Division of Hematology-Oncology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213

ABSTRACT

That ferritin, an iron storage protein, may be present in increased amounts in the serum of patients with neuroblastoma (1). High concentrations predict a poor outcome in patients with advanced disease (2). Studies have indicated that serum ferritin in these patients is at least in part tumor derived (3). In an attempt to understand why ferritin levels correlate with prognosis, studies have been done in which biological effects of ferritin have been examined. These have focused on the ability of ferritin to inhibit host immune responses and thereby enhance tumor growth (4–6). We postulate that in addition to these effects, ferritin, or the ferric ions it carries, is a growth factor for neuroblastoma and directly contributes to tumour growth. To explore this possibility, we studied the effects of desferoxamine, an iron chelator which has a high affinity for ferritin-bound iron (7), on viability of human neuroblastoma cells in vitro and on their ability to express receptors for the iron-binding glycoprotein, transferrin.

INTRODUCTION

Ferritin, an iron storage protein, may be present in increased amounts in the serum of patients with neuroblastoma (1). High concentrations predict a poor outcome in patients with advanced disease (2). Studies have indicated that serum ferritin in these patients is at least in part tumor derived (3). In an attempt to understand why ferritin levels correlate with prognosis, studies have been done in which biological effects of ferritin have been examined. These have focused on the ability of ferritin to inhibit host immune responses and thereby enhance tumor growth (4–6). We postulate that in addition to these effects, ferritin, or the ferric ions it carries, is a growth factor for neuroblastoma and directly contributes to tumour growth. To explore this possibility, we studied the effects of desferoxamine, an iron chelator which has a high affinity for ferritin-bound iron (7), on viability of human neuroblastoma cells in vitro and on their ability to express receptors for the iron-binding glycoprotein, transferrin.

MATERIALS AND METHODS

CHP 126 and CHP 100, two previously characterized neuroblastoma cell lines (8) (gift from G. Johnson, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD), were maintained in tissue culture in RPMI 1640 (M.A. Bioproducts, Walkersville, MD) with 10% heat-inactivated fetal calf serum, 2 mM glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin ("complete medium"). Cells from one or the other were plated into 16-mm tissue culture dishes (5 x 10^5/dish) in 2 ml complete medium or into 96-well microtiter plates (5 x 10^5/dish in 0.2 ml complete medium). Graded amounts (5–60 μM, final concentration) of desferoxamine mesylate (gift from C. Brownley, Jr., CIBA-Geigy, Summit, NJ), or ferrioxamine, an iron-saturated analogue of desferoxamine (gift from Drs. H. H. Peter and K. Scheibli, CIBA-Geigy, Basel, Switzerland) were added to triplicate dishes. Additional dishes contained desferoxamine as well as 60, 120, or 180 μM ferric citrate (Sigma Chemical Co., St. Louis MO). Ferric citrate (60 μM) is stoichiometric for desferoxamine. Control samples contained none of these additives, ferric citrate alone, or desferoxamine in combination with citric acid (120 μM). Dishes or plates were incubated at 37°C in 5% CO2/95% air. Cultures were examined after four hours to ensure that cell attachment had taken place. At serial times, cells were removed from plates by pipetting without prior trypsin digestion, and viable cell counts were done in a hemocytometer using trypan blue exclusion. Cell counts also were done for cells growing in microtiter plates using a colorimetric assay which depends upon the reduction of a tetrazolium dye by viable cells (9). All experiments were repeated at least three times.

RESULTS

As shown in Table 1, 72 h after addition of desferoxamine (final concentration 60 μM) to either of the neuroblastoma cell lines, greater than 80% of the cells were dead. This effect was dose dependent and was not seen with ferrioxamine. Although ferric citrate alone had no effect on growth, its presence largely prevented the cytotoxic effects of desferoxamine. The protection was not due to the citrate anion, as it was not seen with citric acid.

The effect of desferoxamine (60 μM) on viability of CHP 126 and CHP 100 cells over time is shown in Table 2. Cell death was noted as early as 24 h after initial drug exposure. By 48 h, 60–70% of cells were dead and the remaining viable cells showed increased granularity of the cytoplasm. Cell death appeared to be maximal by 96–120 h. Cytotoxicity could be reversed and cell growth resumed if desferoxamine-containing medium was removed within 24 h, but not more than 48 h after plating and replaced with complete medium.

In comparison with its effect on two neuroblastoma cell lines, desferoxamine had relatively little effect on viability of WI-38 or MRHF. After 72-h exposure to 60 μM desferoxamine, both of these lines exhibited 100% viability compared with...
of desferoxamine was largely abrogated by the simultaneous result of its chelating ability since it was not seen with ferrioxamine, a "pre-chelated" form of the drug. Presumably, antineuroblastoma activity in vitro. This activity appears to be its affinity for that metal is particularly high and since the effect of desferoxamine is achievable which are sufficient to chelate iron. On the basis of this experience, it seems likely that drug levels sufficient to chelate ferritin-bound iron in children with neuroblastoma can be achieved with tolerable toxicity in vivo. Neuroblastoma is a pediatric cancer which often has a dismal prognosis. It will be of interest to study the effects of desferoxamine on neuroblastoma xenografts in mice and perhaps ultimately in children with neuroblastoma refractory to conventional chemotherapy.

REFERENCES

Antineuroblastoma Activity of Desferoxamine in Human Cell Lines

Julie Blatt and Suzette Stitely

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/47/7/1749

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.