Necrotizing Effect of Ethanedimethanesulfonate on Spontaneously Occurring Leydig Cell Tumors in Old F344 Rats

Sotokichi Morii,1 Yuji Naka, Toshihiko Inui, and Hiroshi Shintani

Departments of Pathology [S. M., T. I. ] and Urology [Y. N., H. S. ], Kansai Medical University, Moriguchi, Osaka 570, Japan

ABSTRACT

Thirty 18-month-old male F344/DuCrj rats were divided into the following groups: 10 untreated controls; eight vehicle-injected controls; and 12 ethanedimethanesulfonate (EDS)-injected rats. Untreated controls were killed immediately to check for testicular tumor incidence. In rats of the test group, a 75-mg/kg dose of EDS dissolved in dimethyl sulfoxide-water (1:3) was injected i.p. At intervals of 1, 2, 3, and 10 days after injection, two vehicle-injected control rats and three EDS-injected rats were sacrificed, and the testes were fixed by vascular perfusion. The mid sagittal sections of all the fixed testes were examined to determine the incidence of macroscopic Leydig cell tumors, and some tumor tissues of the injection-treated groups were also investigated ultrastructurally. In 28 of 30 animals, a total of 78 Leydig cell tumors could be distinguished. Extensive and severe necrotic alterations accompanying fresh, multiple hemorrhages in early stages and reparative changes in later stages could be observed in a total of 78% of the 32 tumors examined from the EDS-injected group. The tumor cells exhibited ultrastructurally degenerative changes such as chromatin condensation and cytoplasmic vacuolation from 1 day after EDS injection. Therefore, EDS may be a necrotic agent for rat Leydig cell tumor.

INTRODUCTION

EDS was one of a homologous series of alkylating agents investigated for their potential use in the chemotherapy of neoplasm (1). After a single injection of EDS (75 mg/kg), secretion of androgen by the testis in rats was greatly diminished within 3 days and remained low for 3 weeks, with full recovery by 7 weeks (2, 3). Several reports have indicated that a transient decrease in the amounts of testosterone observed after treatment with a dose of EDS was due to the destruction of Leydig cells (4). Recently, ultrastructural changes in stromal tissues of the testis have been described in the rats given injections of EDS (5, 6). Apparently, this compound is a specific toxin for rat Leydig cells and hence will destroy Leydig cell tumors in rats. Despite these intriguing observations, the in vivo effects of EDS on tumors originating from Leydig cells have not yet been documented. In this communication, the necrotizing effect of EDS on spontaneously occurring Leydig cell tumors in old Fischer rats is described.

MATERIALS AND METHODS

Male F344/DuCrj rats were purchased from the Japan Division of Charles-River Breeding Laboratories and maintained in our animal room. At the age of 18 months, 30 rats weighing 330–400 g were divided randomly into the following experimental groups: 10 untreated controls; eight vehicle-injected controls; and 12 EDS-injected rats. When the untreated controls reached the age of 550 days, they were killed by decapitation and their testes were fixed in 10% buffered formalin prior to inspection for testicular tumors. Although no abnormality in the testis could be detected by palpation before the decapitations in all animals, one to two nodular tumors were found in cut surfaces of the fixed testes in nine rats (tumor incidence, 90%). These were diagnosed as Leydig cell tumors. Therefore, at the age of 556 days, two rats from the vehicle-injected control group and three rats from the EDS-injected group were sacrificed 1 day after an i.p. injection. On the 2nd, 3rd, and 10th days, respectively, at the age range of 557–565 days, a similar number of animals from each injection-treated group were killed. EDS is not commercially available and was synthesized by IShizu Chemical Co., as described by Jackson and Jackson (7).

RESULTS

The combined average weight of both testes in 18-month-old rats, 3.8 ± 0.43 g, (SD) represents a slight increase over that of 12-month-old rats (3.3 ± 0.41 g). Any testis bearing large tumors was enlarged at the expense of the testis, which was atrophied. However, weights of those fixed in this experiment were not significantly different from each other. Miliar and/or pea-sized, pinkish, nodular tumors were detected macroscopically in mid sagittal sections of the fixed testes. Double or confluent tumors were recognized infrequently in the testes examined, while bilateral tumors were quite often noted. Finally, it was found that 28 rats had a total of 78 Leydig cell tumors, thus giving a tumor incidence of 93.3%. No significant correlation was apparent between tumor occurrence and the weight of combined accessory sex organs (747.5 ± 40.85 mg). The paired testes weight of EDS-injected rats was not significantly different from that of vehicle-injected rats at any time during the experiment. Within 3 days of EDS-injection, however, gray necrotic foci contaminated with dark red hemorrhages were observed in 19 of 24 tumors found within 18 tes tes of the EDS-injected rats. Brownish gray foci could be detected in six of eight tumors found within six testes of the EDS-injected rats on the 10th day. In the vehicle-injected group no necrotic foci could be seen in 20 nodular tumors found within 14 testes in the group as well as in a rat having no Leydig cell tumors.

Histological examinations showed that the nodular tumors were composed of large cells with abundant eosinophilic, vacuolated cytoplasm and nuclei typical of those of actively secret-
ing Leydig cells (Fig. 1) and/or smaller cells with scanty, pale cytoplasm and a dense, wheel-like nuclear pattern typical of unstimulated interstitial cells of intertubular tissues in the testis (Fig. 2). Such differing histological patterns could often be detected within a testicle, and even within the same nodule, where an intermediate cell pattern could sometimes be seen. Microcysts, minute necroses, and small hemorrhages were occasionally observed in the tumor tissues of the control groups. In general, larger tumors were accompanied by severe atrophy of the surrounding seminiferous tubules, while smaller ones were found within the active testicular tissues. Nontumorous Leydig cells of the control groups were slightly atrophic generally, but some were focally hyperplastic. On the other hand, in the EDS-injected group, extremely large and severe necrotic alterations were demonstrated in 19 of the 24 Leydig cell tumors examined in 18 testes of nine rats at the 1st, 2nd, and 3rd days of EDS administration. Such necrosis was accompanied by fresh, multiple hemorrhages and leukocytic infiltrations (Figs. 3 and 4), with similar degenerative and necrotic changes being seen also in most of the nontumorous Leydig cells. Subacute stromal reactions (hemosiderin-containing macrophages, proliferating fibroblasts, fibrosis, etc.) were observed in the peripheral areas of completely necrotic foci in six of eight Leydig cell tumors on the 10th day of EDS administration. At that time no Leydig cells could be detected in the intertubular tissues of six examined testes.

Neoplastic cells with two distinct types of ultrastructural characteristics were evident in the Leydig cell tumors of vehicle-

Fig. 1. Leydig cell tumor of a vehicle-injected control rat. Large cell pattern. H & E, × 200.

Fig. 2. Leydig cell tumor of a vehicle-injected control rat. Small compact cell pattern. H & E, × 200.

Fig. 3. Leydig cell tumor of a rat given an injection of EDS 2 days before. Severe necrosis can be seen in the tumor tissue, and some Leydig cells in the intertubular tissues are degenerative although the seminiferous tubules themselves are not injured. H & E, × 200.

Fig. 4. Leydig cell tumor of a rat given an injection of EDS 3 days before. Large hemorrhages and extensive leukocytic infiltration can be seen in the necrotic focus. H & E, × 200.

Fig. 5. Electron micrograph of Leydig cell tumor in a vehicle-injected control rat. Prominent nuclei, smooth ER, and tubular-structured mitochondria can be seen in the steroid secreting cells. × 13,000.
injected controls. One cell type was characterized by small nuclei and scanty cytoplasm with many ribosomes, few smooth ER, and small mitochondria (Figs. 5 and 6). The other displayed the nuclei and cytoplasmic characteristics of actively steroid-secreting cells, where numerous profiles of lipid droplets, vesicular smooth ER, and mitochondria with vesicular cisternae could be seen (Fig. 7). On the first day of EDS administration, when the cytoplasm of most tumor cells appeared to be vacuolated, irregularly spherical masses of clumped chromatin were found dispersed around the periphery of the nuclei (Fig. 8). Many of the tumor cells seemed very dense and large granules appeared in the cytoplasm with infrequent ribosomes and mitochondria on the 2nd and 3rd days of EDS administration. At that time, the nuclei were very pyknotic or lytic, and leukocytes and macrophages were prevalent. Around the necrotic foci in Leydig cell tumors of the rats given injections of EDS 10 days before, many tumor cells were unidentifiable and some displayed dense morphology characteristic of degeneration.

DISCUSSION

 Leydig cell tumor is the most common testicular neoplasm in some strains of male rat (9). It occurs usually in old rats and the incidence increases with age. In the present experiment the incidence of macroscopic tumors in sagittal sections was 93% in the testis of 18-month-old Fischer rats. The growth rate of
this benign tumor has been reported to be mainly hormone responsive, especially LH dependent, but few of these tumors produce androgen (10). In the tissue of this benign neoplasm, microcysts, minute necroses, and small hemorrhages can sometimes be detected. However, a high incidence of extremely large necroses with multiple hemorrhages was discovered in the rats given injections of EDS during the present investigation. Degenerative changes in the ultrastructure of most Leydig cells of adult rats have been noted 12 h after a single 100-mg/kg dose of EDS (5). At 72 h after a single 75-mg/kg dose of EDS, no Leydig cells could be detected and no 3β-hydroxysteroid dehydrogenase- or esterase-positive cells were present (5). Other compounds with structures similar to that of EDS, such as butanedimethylsulfonate and ethanemethylsulfonate, have had no effect on Leydig cells in mature rats (10). It has been concluded that EDS specifically destroys rat Leydig cells, and it is further proposed in this study that EDS is a necrotic agent for tumors which originate as Leydig cells. However, few Leydig cell tumors were refractory to the necrotizing action of EDS in our observations. While EDS is selective for Leydig cells of the mature rat testis, those of immature (22-day-old) male rats were resistant to EDS (11). Recently, acute response to EDS has been reported resulting in the degeneration of fetal rat Leydig cells and, via the phagocytic activity of interstitial macrophages, all fetal Leydig cells eventually disappeared from the testis (12). EDS had no detectable effect on steroid secretion in in vitro cultured cells from the Leydig cell tumors of rats (10). The cytotoxicity of EDS towards Leydig cells may be dependent on the extent of LH stimulation, and EDS may inhibit specifically LH-regulated functions of Leydig cells, possibly via alkylation of proteins. Further investigations should be carried out on other LH-dependent tumors and on the Leydig cells of other species.

REFERENCES

Necrotizing Effect of Ethanedimethanesulfonate on Spontaneously Occurring Leydig Cell Tumors in Old F344 Rats

Sotokichi Morii, Yuji Naka, Toshihiko Inui, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/48/15/4395

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.