Contrasting Duration of Inhibition of Cell-Cell Communication in Primary Mouse Epidermal Cells by Phorbol 12,13-Dibutyrate and by Bryostatin 1

Gabriella Pasti, Edgar Rivedal, Stuart H. Yuspa, Cherry L. Herald, George R. Pettit, and Peter M. Blumberg

Molecular Mechanisms of Tumor Promotion Section [G. P., E. R., P. M. B.] and In Vitro Pathogenesis Section [S. H. Y.], Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, Maryland 20892 and Cancer Research Institute and Department of Chemistry [C. L. H., G. R. P.], Arizona State University, Tempe, Arizona 85287

ABSTRACT

The bryostatins, macrocyclic lactones isolated on the basis of their antineoplastic activity, activate protein kinase C in vitro and inhibit phorbol ester binding to the enzyme. In intact cells, the bryostatins induce some phorbol ester responses, such as neurophill activation, but paradoxically they not only fail to induce other responses, e.g., differentiation in HL-60 promyelocytic leukemia cells, but actually block response to the phorbol esters. We compare here bryostatin 1 and phorbol 12,13-dibutyrate as inhibitors of cell-cell communication in cultured primary mouse epidermal cells. Like phorbol 12,13-dibutyrate, bryostatin 1 at nanomolar concentrations markedly inhibited cell coupling. It differed from the phorbol esters, however, in that its action was more transient. By 4 h of incubation bryostatin 1 caused little inhibition of coupling. Moreover, coincubation of bryostatin 1 and phorbol 12,13-dibutyrate gave no greater response at this time than that found for bryostatin 1 alone. Time-dependent inhibition of the protein kinase C pathway could account for many of the observed differences between the actions of the phorbol esters and bryostatin 1.

INTRODUCTION

Protein kinase C, the major receptor for the phorbol ester tumor promoters, is thought to mediate one arm of the signal transduction pathway for that large class of hormones and cellular effectors which act to induce enhanced phosphoinositide turnover (1). The phorbol esters at nanomolar concentrations activate the enzyme, apparently by functioning as analogues of sn-1,2-diacylglycerol, a product of phosphoinositide breakdown (2). Several other classes of structurally distinct products, including the indole alkaloid lyngbyatoxin and the polyacetales aplysiaatoxin, have been identified which inhibit phorbol ester binding and induce similar biological responses (3). These compounds have proven of great value for modeling studies of the phorbol ester pharmacophore (4). In addition, the parallelism of their actions strongly supports the role of protein kinase C as the major effector of phorbol ester responses.

The bryostatins, macrocyclic lactones isolated by Pettit and coworkers from Bugula neritina (5), likewise activate protein kinase C (6, 7), bind directly to the enzyme (8), and inhibit phorbol ester binding (6, 7). In contrast to the indole alkaloids and polyacetals, however, the bryostatins induce only some of the same responses as do the phorbol esters. In HL-60 cells, depending on the subline, bryostatin 1 partially (8) or completely (7) failed to induce terminal differentiation and correspondingly blocked the differentiation response to the phorbol esters. In Friend erythroleukemia cells, where phorbol esters block differentiation induced by hexamethylene bisacetamide, treatment with bryostatin 1 overcame the phorbol ester block and restored differentiation (9). Provocatively, the action of bryostatin 1 in this system was noncompetitive with respect to the phorbol ester. In Sencar mice, bryostatin 1 was inactive as a complete tumor promoter and inhibited tumor promotion by phorbol 12-myristate 13-acetate (10). In contrast to the findings with the above systems, bryostatin 1 closely resembled the phorbol esters in its mitogenic activity on Swiss 3T3 cells (6) and in its activation of polymorphonuclear leukocytes (11). Understanding the mechanisms which account for the divergent responses to the phorbol esters and the bryostatins may shed new light on control of the protein kinase C pathway.

In primary mouse epidermal cells, bryostatin 1 causes some effects similar to those of the phorbol esters, such as inhibition of epidermal growth factor binding or induction of ornithine decarboxylase, but fails to induce differentiative responses such as induction of epidermal transglutaminase or cornified envelope formation (12). In this report, we compare the activity of bryostatin 1 and PDBu5 on cell-cell communication in the primary mouse epidermal cells.

Inhibition of cell-cell communication in response to the phorbol esters has been characterized in a number of cell systems (13–16). It has attracted considerable attention because it represents one postulated mechanism whereby initiated cells could escape suppression by surrounding normal cells. The inhibition of cell-cell communication is of further interest because it has a rapid onset, permitting analysis of the time course of response over a broad time range.

MATERIALS AND METHODS

Cell Culture. Epidermal cells from newborn BALB/c mouse epidermis were prepared by a trypsin flotation procedure (17). Cells (4 x 106) were plated in 60-mm plastic dishes in Eagle's minimum essential medium containing 0.05 mM Ca2+ and 8% chexeled fetal bovine serum and incubated at 37°C in 95% air:5% CO2. The next day the cells were washed with Ca2+, Mg2+-free phosphate-buffered saline to remove unattached cells; they were fed with the appropriate medium at this time and after an additional 2 days. Subconfluent cultures 3–5 days after plating were used for the experiments.

Measurement of Cell-Cell Communication. Fluorescent Lucifer Yellow CH and PDBu were purchased from Sigma Chemical Company, St. Louis, MO.

Cell Culture. Epidermal cells from newborn BALB/c mouse epidermis were prepared by a trypsin flotation procedure (17). Cells (4 x 106) were plated in 60-mm plastic dishes in Eagle's minimum essential medium containing 0.05 mM Ca2+ and 8% chexeled fetal bovine serum and incubated at 37°C in 95% air:5% CO2. The next day the cells were washed with Ca2+, Mg2+-free phosphate-buffered saline to remove unattached cells; they were fed with the appropriate medium at this time and after an additional 2 days. Subconfluent cultures 3–5 days after plating were used for the experiments.

Received 7/28/87; revised 10/13/87; accepted 10/15/87.

The costs of publication of this article were defrayed in part by the payment of page charges. The costs of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 The Arizona State University Cancer Research Institute laboratory received financial support from the Fannie E. Rippel Foundation, the Arizona Disease Control Research Commission, the Robert B. Dalton Endowment Fund, and Public Health Service Grant CA-16049-07-11 awarded by the National Cancer Institute, Department of Health and Human Services.

2 Current address: Department of Hygiene and Epidemiology, University Medical School, Nagyerdei Krt. 98, H-4012, Debrecen, Hungary.

3 To whom requests for reprints should be addressed.

4 N. A. Sharkey, D. J. DeVries, Y. Kamano, C. L. Herald, G. R. Pettit, and P. M. Blumberg, unpublished observations.

5 To whom requests for reprints should be addressed.

6 The abbreviations used are: PDBu, phorbol 12,13-dibutyrate; ED50, 50% effective dose.
bryostatin 1 on dye transfer was studied, the cells received Eagle's minimum essential medium containing 1.2 mM Ca^{2+} and 8% chelexed fetal bovine serum [high (Ca^{2+}) medium] together with or without (controls) the chemicals. The number of neighboring cells containing dye was determined 10 min after injection.

RESULTS

Primary mouse epidermal cells can be maintained in a proliferating state when cultured in low-calcium medium (0.05 mM Ca^{2+}) (18). Under such conditions, the cells show efficient cell-cell communication, as measured by intercellular transfer of microinjected Lucifer Yellow CH dye. Addition of PDBu at 200 nM did not affect dye transfer by the cells grown in low-calcium media (data not shown).

Upon medium change to high-calcium medium (1.2 mM Ca^{2+}), the extent of cell coupling was maintained for 4–6 h (Fig. 1A) and then gradually declined to 25–40% of the initial value by 14 h (Figs. 2 and 5). Addition of 200 nM PDBu following the shift to high-calcium medium dramatically inhibited the extent of cell coupling, reducing it to 10% of the control value within 30 min (Figs. 1B and 2). Suppression of dye transfer was maintained for at least 16 h, although the decrease in the extent of cell coupling in the controls at later times renders interpretation problematic.

The extent of cell coupling by PDBu, measured at 4 h in cells shifted to high-calcium medium, was 18 nM (Fig. 3), a value between the dissociation constants of PDBu for the high- and low-affinity receptors in these cells (19). It should be noted that the dose-response curve for inhibition of cell coupling by PDBu was more abrupt than typical, with the majority of the inhibition occurring as PDBu was increased from 10 to 30 nM.

After incubation for 4 h, the effect of bryostatin 1 on cell coupling in the absence or presence of PDBu was determined (Fig. 4). By itself, bryostatin 1 caused measurable inhibition of cell coupling at this time in many but not all experiments. The maximal extent of inhibition, 0–30%, was much less than that observed with PDBu. In the presence of 200 nM PDBu, the effect of bryostatin 1 was the opposite. Here, increasing concentrations restored the level of cell coupling (Fig. 1C), until at 100 nM bryostatin 1 a similar extent of cell coupling was seen in either the absence or presence of PDBu. The ED_{50} of bryostatin 1 as an inhibitor of the PDBu responses was 14 nM.

Examination of the time course for the inhibition by bryostatin 1 of cell coupling in the absence of PDBu indicated that the limited response was a function of incubation time rather than intrinsic to bryostatin 1 itself (Fig. 5). At incubation times of 30–90 min, bryostatin 1 inhibited cell coupling to a similar extent as did PDBu, 80–90%. However, inhibition was rapidly lost thereafter. Recovery of cell coupling upon incubation in the presence of bryostatin 1 together with PDBu was similar to recovery of coupling in the presence of bryostatin 1 alone. Because the effect of bryostatin 1 at these later times could be detected by its inhibition of phorbol ester action, it is unlikely that bryostatin 1 was being degraded. In support of this conclusion, no degradation was observed upon direct analysis using [^{3}H]bryostatin 4, a related derivative. The dose-response curve for bryostatin 1 as an inhibitor of cell coupling, measured with a 60-min incubation time, yielded an ED_{50} of 3 nM (Fig. 6). This value was similar, but not identical, to the ED_{50} of 15 nM observed for the blockade of the PDBu response by bryostatin 1 at 4 h.

In order to determine whether the inhibitory effect of bryo-
Fig. 1. Effect of PDBu and bryostatin 1 on dye transfer. Dye transfer was examined 4 h after shift to high-calcium medium as described in "Materials and Methods". A, control; B, PDBu, 200 nM, added at time of medium change; C, PDBu, 200 nM, and bryostatin 1, 120 nM, were added together at the time of medium change. × 1000.

Identical; the non-theoretical shape of the dose-response curves and the tendency of bryostatin to absorb to plasticware make exact comparison difficult. These latter results suggest that the binding site for bryostatin 1 on protein kinase C which mediates enzymatic activation and the target in the cell which mediates the inhibitory effects of the bryostatin may be the same or related. For example, bryostatin binding to protein kinase C might directly cause accelerated down-regulation. Alternatively, bryostatin binding to a distinct target evolutionarily related to the regulatory domain on protein kinase C might have a negative regulatory effect on the direct protein kinase C activation by bryostatin.

Differences in responsiveness to the bryostatins between cell types may reflect in part different durations for the transient activity of the bryostatins in the different cells. Thus, partial response in the rat pituitary cells was observed at 48 h (30) and complete response in the Swiss 3T3 cells at 40 h (6), in contrast to the much shorter effective duration in the mouse primary epidermal cells. Comparison of an identical endpoint in these different systems would help to better evaluate this hypothesis.

The inhibition of cell coupling by the phorbol esters in the primary mouse epidermal cells was dependent upon the change of medium from low to high calcium. The basis for this dependence is currently being investigated. The medium change is associated with elevated intracellular calcium. Since high levels of calcium alone can block cell coupling in other systems.

---


TRANSIENT INHIBITION BY BRYOSTATIN 1

Fig. 2. Time course of inhibition by PDBu of cell coupling. Cells were prepared and used as described in "Materials and Methods." The medium was changed to high-calcium medium and PDBu (200 nM) was added to cultures at 0 h. Lucifer Yellow CH solution was injected at the times indicated, and the number of coupled cells per injection was measured 10 min later. Points, mean of 5 to 11 separate injections in a single experiment; bars, SE; O, control; •, PDBu.

Fig. 3. Inhibition of cell coupling as a function of PDBu concentration. At 0 h, the medium was changed to high-calcium medium and different doses of PDBu were added to cultures. Lucifer Yellow CH solution was injected at 4 h. Data are expressed as the mean of 6 to 9 separate injections; bars, SE. A second experiment gave similar results.

Fig. 4. Effect of bryostatin 1 on PDBu-mediated inhibition of cell coupling at 4 h of incubation. At 0 h the medium was changed to high-calcium medium and cells were treated with various doses of bryostatin 1 in the absence of PDBu (C) or in the presence of 200 nM PDBu (•). Lucifer Yellow CH solution was injected at 4 h. Values are the mean of 6 to 11 separate injections; bars, SE. A second experiment gave similar results.

Fig. 5. Time course of inhibition of cell coupling by bryostatin 1. At 0 h the medium was changed to high-calcium medium and the cells were treated with 120 nM bryostatin 1. The fluorescent dye was injected at the times indicated. Points, mean of 11 to 18 separate injections from 2 experiments; bars, SE; O, control; •, bryostatin 1.

Fig. 6. Inhibition of cell coupling as a function of bryostatin 1 concentration at 1 h of incubation. At 0 h the medium was changed to high-calcium medium and bryostatin 1 was added. Lucifer Yellow CH was injected 1 h later. Values are mean of 14 to 17 separate injections from 2 experiments; bars, SE.

Table 1 Lack of effect of inhibitors of macromolecular synthesis on the block of PDBu action by bryostatin 1

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Treatment</th>
<th>Cell coupling % of control</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control</td>
<td>100 ± 11</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Cycloheximide</td>
<td>84 ± 17</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PDBu + cycloheximide</td>
<td>13 ± 3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>PDBu + bryostatin 1</td>
<td>98 ± 4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PDBu + bryostatin 1 + cycloheximide</td>
<td>90 ± 19</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Control</td>
<td>100 ± 14</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Actinomycin D</td>
<td>96 ± 12</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>PDBu + actinomycin D</td>
<td>10 ± 2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>PDBu + bryostatin 1</td>
<td>114 ± 6</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>PDBu + bryostatin 1 + actinomycin D</td>
<td>114 ± 14</td>
<td>11</td>
</tr>
</tbody>
</table>

(31), it may be that the observed effect represents a synergistic response to elevated but lower intracellular calcium levels together with protein kinase C activation. Alternatively, the elevated intracellular calcium may be modulating the protein kinase C pathway directly.

Natural products chemistry has played a critical role in the identification and elucidation of the function of protein kinase C. Because of their differential activity on responses mediated by protein kinase C, the bryostatins promise to afford exciting insights into selective control of this system.
ACKNOWLEDGMENTS

We thank Nancy A. Sharkey for technical assistance and Charlotte Crumley for typing. For other necessary assistance we wish to thank Drs. John E. Leet and Yoshiaki Kamano.

REFERENCES


Table 2 Responses to bryostatin 1 alone or in combination with phorbol ester

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Response</th>
<th>Incubation</th>
<th>Bryostatin 1 alone</th>
<th>Bryostatin 1 + phorbol ester</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human neutrophils</td>
<td>Superoxide production</td>
<td>20 min</td>
<td>++++</td>
<td>NT*</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Specific granule release</td>
<td></td>
<td>++++</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>HL-60 promyelocytic leukemia cells</td>
<td>Protein kinase C translocation</td>
<td>30 min</td>
<td>++++</td>
<td>NT</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Adhesion</td>
<td>5 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cell growth</td>
<td>5 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differentiation markers</td>
<td>5 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friend erythroleukemia cells</td>
<td>Adhesion</td>
<td>8 h</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Differentiation markers</td>
<td>5 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse primary epidermal cells</td>
<td>EGF binding</td>
<td>2 h</td>
<td>+++</td>
<td>+++</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Ornithine decarboxylase induction</td>
<td>3 h</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morphology</td>
<td>6 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epidermal transglutaminase induction</td>
<td>9 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cornified envelope formation</td>
<td>24 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prolactin release</td>
<td>30 min</td>
<td>++++</td>
<td>+++</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Prolactin synthesis</td>
<td>24 h</td>
<td>+++</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morphology</td>
<td>48 h</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Swiss 3T3</td>
<td>FUrTThymidine incorporation</td>
<td>40 h</td>
<td>++++</td>
<td>+++</td>
<td>6</td>
</tr>
</tbody>
</table>

* NT, not tested; EGF, epidermal growth factor.

Contrasting Duration of Inhibition of Cell-Cell Communication in Primary Mouse Epidermal Cells by Phorbol 12,13-Dibutyrate and by Bryostatin 1


Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/48/2/447

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.