Effect of Diallyl Sulfide on Rat Liver Microsomal Nitrosamine Metabolism and Other Monooxygenase Activities

John F. Brady, Dechun Li, Hiroyuki Ishizaki, and Chung S. Yang

Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, and Department of Chemical Biology and Pharmacognosy, College of Pharmacy, Rutgers University, Piscataway, New Jersey 08855

ABSTRACT

It has been reported that p.o. administration of diallyl sulfide (DAS), a naturally occurring component of garlic (Allium sativum), inhibits 1,2-dimethylhydrazine-induced colon and liver cancer in rodents. A possible mechanism for this protective effect is inhibition of hepatic activation of the procarcinogen. The effect of DAS on P450IIE1, an isozyme of cytochrome P-450 which is active in the oxidative metabolism of dimethylhydrazine, was conveniently assayed in the present study by determination of N-dimethylnitrosamine demethylase (NDMA) activity at 1 min N-dimethylnitrosamine in Sprague-Dawley rat liver microsomal incubations. DAS was found to be a competitive inhibitor of NDMAd, in contrast to the irreversible inactivation of NDMA produced by carbon tetrachloride incubated under similar conditions. The inhibition by DAS of the demethylation of several substrates was selective. The thioether was most potent against N-dimethylnitrosamine, less effective against N-nitrosomethylbenzylamine, and essentially ineffective against benzphetamine and ethylmorphine. Microsomes prepared at 3 h after DAS administration (200 mg/kg in corn oil intragastrically) showed moderate inhibition (<30% inhibition compared to control microsomes) of several demethylase activities; however, microsomes prepared 18 h posttreatment showed a marked decrease (about 80% inhibition compared to controls) in NDMA activity, minor effects on other demethylase activities, and a 6-fold increase in pentoxyresorufin dealkylation. These trends at 18 h were also observed in a previous method which showed suppression in the level of P450IIE1 and an elevation in P450III.B. The selective inhibition of P450IIE1 activity and suppression of its level in microsomes may contribute to the reported chemoprotective effects of DAS.

INTRODUCTION

The identification and exploitation of dietary anticarcinogens may substantially contribute to the prevention of cancer in humans. The salutary properties of garlic (Allium sativum), a widely consumed herb, have long been recognized in folklore (3) and are a current subject of scientific investigation (4-7). Diallyl sulfide [(CH2=CHCH2)2S], a component of garlic oil, has recently been shown to possess potent inhibitory activity toward the induction of colon (8, 9) and liver (10) cancer by 1,2-dimethylhydrazine (CH3NHN(CH3)2) and toward esophageal cancer induced by N-nitrosomethylbenzylamine (NMBA) in laboratory animals. The bioactivation of dimethylhydrazine involves the sequential hepatic oxidation of azomethane (CH3N≡NCH3) to azoxy-methane [CH3N=N(O)CH3] to methylazoxymethanol [HOCH2N≡N(O)CH3] (11). Since the virtual absence of this last catalytic activity in colon mucosa has been demonstrated (11) and probable routes for the transport and exposure of the reactive metabolites to the colon exist (11, 12), a potential mechanism for the anticarcinogenic property of DAS is inhibition of the initial hepatic conversions. Other sulfur-containing compounds have been shown to block azoxymethane N-oxidation in vivo (13).

As recently demonstrated using microsomal (14) and purified enzyme systems, oxidation of azoxymethane to methylazoxymethanol is catalyzed by cytochrome P450IIE1. This isozyme is present constitutively in mammalian species (15-17) and is inducible by acetone or isoniazid treatment, fasting, diabetes, and numerous other factors (see Ref. 18). It is active in the metabolism of various small organic compounds such as NDMA, acetone, ethanol, carbon tetrachloride, and n-pentane. An interaction between P450IIE1 and DAS was considered likely since this compound bears structural similarity to diethyl ether, an inhibitor of P450IIE1-mediated reactions in vivo and in vitro and a high-affinity substrate for this isozyme (see Ref. 19).

In order to elucidate the mechanism for its anticarcinogenic properties, the effect of DAS on selected rat hepatic microsomal monooxygenase parameters was determined.

MATERIALS AND METHODS

Materials. Diallyl sulfide was obtained from Aldrich Chemical Co. (Milwaukee, WI). Corn oil was a product of Mazola, CPC International, Inc. (Englewood Cliffs, NJ). N-Nitrosomethylbenzylamine (NMBA) was from Ash Stevens, Inc. (Detroit, MI). P-Nitroanisole was from the Eastman Kodak Co. (Rochester, NY). Aminopyrine and ethylmorphine were obtained from Sterling-Winthrop Research Institute (Rensselaer, NJ) and Mallinckrodt Chemical Works (St. Louis, MO), respectively. Other chemicals were obtained from sources indicated previously (19).

Animals and Microsomes. Male Sprague-Dawley rats (90-100 g initial body weight) were maintained as described (19). The acetone and phenobarbital treatments were conducted using previous methods (19). Diallyl sulfide was given intragastrically at a dose of 200 mg/kg body weight in corn oil (1 ml/100 g body weight). Animals were sacrificed between 9 and 10 a.m. for preparation of microsomes (18).

Metabolic Assays and Analyses. The methods for determination of P-450 concentration, NADPH/P-450 reductase activity, and immunoblot analysis have been described (19). A previous method (18) for the determination of microsomal demethylase activity was used. The incubation volume was 0.5 ml unless otherwise indicated. DAS apparently dissolves in water at a concentration of 2 mM. For the inhibition studies, DAS was added from a fresh aqueous solution containing a 10-fold higher concentration than in the final incubation. Preliminary analysis for DAS utilized a Hewlett Packard 5710A gas chromatograph with flame ionization detection and a 5% Carbowax 20M, 60/80 Carbopack-B column from Supelco (Bellefonte, PA). Statistical analyses were performed using Student's t test.

RESULTS

In Vitro Inhibition of Microsomal Monooxygenase Activities.

DAS was a potent inhibitor of the NDMA demethylase activity

Received 4/5/88; revised 6/15/88; accepted 7/29/88.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by NIH Grants ES-03938 and CA-71317.

2 On leave from the Department of Biochemistry, Tianjin College of Traditional Chinese Medicine, Tianjin, China.

3 To whom requests for reprints should be addressed, at Rutgers University.

4 The abbreviations used are: NMBA, N-nitrosomethylbenzylamine; DAS, diallyl sulfide; NDMA, N-nitrosodimethylamine; P-450, cytochrome P-450. The nomenclature of the P-450 isozymes follows the convention in Ref. 1. Isozyme P450IIE1, encoded by the rat gene P450IIE1, has also been referred to as P-450m by our laboratory and as P-450 by Ryan et al. (12).

6 O. S. Sohn, H. Ishizaki, C. S. Yang, and E. S. Fiala, manuscript in prepara-
displayed by acetone-induced rat liver microsomes. In incubations containing varied concentrations of substrate, an apparent K_m of 25.8 ± 2.3 (SD) µM ($n = 3$) was observed. DAS exhibited competitive inhibition with an apparent K_i of 26.8 ± 7.2 µM ($n = 3$) (Fig. 1).

In order to assess the selectivity of the inhibitory actions of DAS, its effect on monooxygenase activities associated with control and phenobarbital-induced microsomes was determined (Table 1). In both types of microsomes, DAS was a potent inhibitor of NDMA demethylation, a moderate inhibitor of NMBA demethylation, and a weak inhibitor of benzphetamine and ethylmorphine demethylations. These results demonstrated that the inhibition by DAS was not a general effect on all mixed-function oxidase activities but was somewhat selective.

The incubation mixtures contained control microsomes (0.43 mg/ml) or phenobarbital-induced microsomes (0.32 mg/ml) and varied concentrations of the indicated substrate. Values are the average from duplicate incubations.

Table 1 Effect of diallyl sulfide on monooxygenase activities associated with control and phenobarbital-induced rat liver microsomes

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Activity (nmol HCHO/min/mg) at following diallyl sulfide concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDMA</td>
<td>1.88 (55.9)</td>
</tr>
<tr>
<td>NMBA</td>
<td>0.57 (93.2)</td>
</tr>
<tr>
<td>Benzphetamine</td>
<td>0.59 (98.5)</td>
</tr>
<tr>
<td>Ethylmorphine</td>
<td>8.80 (92.2)</td>
</tr>
</tbody>
</table>

In experiment 1, microsomes (0.32 mg/ml) were incubated for 10 min in the presence of the NADPH-generating system, 1 mM NDMA, and in the absence or presence of inhibitor (0.2 mM). In experiments 2 and 3, the microsomes were preincubated for 20 min in the absence or presence of the NADPH-generating system, followed by the addition of NDMA (1 mM) (plus NADPH-generating system in experiment 2) for a 10-min incubation; the inhibitors were present at 0.20 mM during the preincubation. Values are the means ± SD from three incubations. The data in each column were submitted to an analysis of variance and tested for significant differences using the Student-Newman Keuls test.

Table 2 Influence of incubation conditions on the inhibition by DAS or carbon tetrachloride (CT) of the NDMA demethylase activity associated with acetone-induced microsomes

<table>
<thead>
<tr>
<th>Conditions</th>
<th>No inhibitor</th>
<th>DAS</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No preincubation</td>
<td>7.63 ± 0.24</td>
<td>2.73 ± 0.05</td>
<td>4.36 ± 0.06</td>
</tr>
<tr>
<td>20-min preincubation without NADPH</td>
<td>6.86 ± 0.03*</td>
<td>3.95 ± 0.17*</td>
<td>5.28 ± 0.12*</td>
</tr>
<tr>
<td>20-min preincubation with NADPH</td>
<td>7.05 ± 0.07*</td>
<td>6.87 ± 0.03*</td>
<td>5.29 ± 0.31*</td>
</tr>
</tbody>
</table>

* Significantly different from the values in Line 1, $P < 0.05$.

Table 3 Effect of diallyl sulfide or carbon tetrachloride on the stability of cytochrome P-450

<table>
<thead>
<tr>
<th>Incubation conditions</th>
<th>µM P-450</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without incubation</td>
<td>1.30 ± 0.03</td>
<td>100.0</td>
</tr>
<tr>
<td>With NADPH-generating system</td>
<td>0.63 ± 0.02</td>
<td>48.8</td>
</tr>
<tr>
<td>+ Diallyl sulfide (1 mM)</td>
<td>0.54 ± 0.08</td>
<td>41.7</td>
</tr>
<tr>
<td>+ Carbon tetrachloride (1 mM)</td>
<td>0.23 ± 0.02</td>
<td>17.7</td>
</tr>
</tbody>
</table>

of either DAS or carbon tetrachloride, but in the absence of NDMA, resulted in a moderate reduction in the inhibition that had been observed without preincubation. The inhibition persisted when NADPH was present during the preincubation with carbon tetrachloride but was essentially eliminated when DAS was preincubated under similar conditions. These observations confirmed an irreversible inactivation by carbon tetrachloride and were consistent with the competitive inhibition by DAS described above. The possibility that DAS was converted to a noninhibitory metabolite during the preincubation was supported by a preliminary gas chromatographic analysis which revealed a >90% decrease in the concentration of DAS when NADPH was present (not shown).

This contrast between the two inhibitors was also apparent when their effects on the binding of CO to dithionite-reduced microsomes, after a 40-min incubation, were compared (Table 3). The decrease in CO binding during 40 min in the control was probably due to lipid peroxidation (21). The presence of DAS during the incubation had no effect on the CO binding compared to the control, while carbon tetrachloride gave a pronounced decrease in measurable P-450.

Influence of DAS Treatment on Microsomal and Soluble Monooxygenase Activities. In previous *in vivo* studies (8-10), DAS usually was administered intragastrically 1-3 h prior to exposure to procarcinogen. The *in vitro* studies demonstrated that DAS acted as a competitive inhibitor of certain monooxygenase activities. The possibility that the inhibition of NDMA demethylation and other oxidative activities was observed in microsomes and in the postmitochondrial supernatant fraction (S-9) obtained 3 h after the treatment (Table 4). The percentage of inhibition in both the S-9 fraction and in microsomes was not diminished at higher NDMA concentrations. These observations were not consistent with competitive inhibi-
EFFECT OF DAS ON MICROSONAL MONOOXYGENASE ACTIVITIES

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NDMA (1 mm)</th>
<th>NDMA (0.2 mm)</th>
<th>NMBA</th>
<th>Benzphetamine</th>
<th>Ethylmorphine</th>
<th>p-Nitroanisole</th>
<th>Aminopyrine</th>
<th>7-Pentoxyresorufin O-dealkylationb (pmol resorufin/ min/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.O. (3 h)</td>
<td>2.31 ± 0.73</td>
<td>2.07 ± 0.66</td>
<td>1.14 ± 0.26</td>
<td>6.27 ± 1.01</td>
<td>8.40 ± 1.01</td>
<td>2.78 ± 0.68</td>
<td>3.93 ± 1.22</td>
<td>20.6 ± 2.8</td>
</tr>
<tr>
<td>DAS (3 h)</td>
<td>1.72 ± 0.24</td>
<td>1.48 ± 0.21</td>
<td>0.98 ± 0.14</td>
<td>5.60 ± 1.08</td>
<td>7.45 ± 1.61</td>
<td>1.98 ± 0.27</td>
<td>3.12 ± 0.83</td>
<td>11.8 ± 1.0</td>
</tr>
<tr>
<td>C.O. (18 h)</td>
<td>3.30 ± 0.28</td>
<td>2.92 ± 0.25</td>
<td>1.53 ± 0.16</td>
<td>7.35 ± 1.06</td>
<td>12.79 ± 1.31</td>
<td>3.56 ± 0.03</td>
<td>5.11 ± 0.43</td>
<td>12.5 ± 1.5</td>
</tr>
<tr>
<td>DAS (18 h)</td>
<td>0.71 ± 0.04c</td>
<td>0.53 ± 0.02c</td>
<td>1.06 ± 0.16</td>
<td>8.77 ± 0.63</td>
<td>5.76 ± 0.47c</td>
<td>2.08 ± 0.07c</td>
<td>3.97 ± 0.17</td>
<td>74.3 ± 21.1c</td>
</tr>
<tr>
<td>S-9 fraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.O. (3 h)</td>
<td>0.47 ± 0.17</td>
<td>0.34 ± 0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAS (3 h)</td>
<td>0.23 ± 0.05c</td>
<td>0.20 ± 0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Substrates were present at 1 mM unless otherwise indicated. Values are the mean ± SD from four separate microsomal preparations.

b For comparison, the rate by microsomes from phenobarbital-induced rats was 1350 pmol resorufin/min/mg. The substrate concentration was 10 μM.

c Values are significantly different from those of the corresponding control, P < 0.002.

Fig. 2. Immunoblot analysis of hepatic microsomes from control and diallyl sulfide-treated rats. Microsomes were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblot analysis. Lanes a–e are immunoblots using anti-P450IIE1 IgG; Lanes f–j are immunoblots using anti-P450IIE1 IgG. Lanes b and c (also corresponding to Lanes g and h, respectively) contained microsomal proteins from two separate control rats. Lanes d and e (also corresponding to Lanes i and j, respectively) contained microsomal proteins from two separate diallyl sulfide-treated rats. Purified P450IIE1 (0.13 μg) was applied to Lane A. Lane f contained 0.8 μg of purified P450IIE1. Lanes h–j contained 5.3 μg microsomal protein each.

DISCUSSION

Previous studies (8–10) have demonstrated that DAS blocks the induction of carcinogetic responses in liver and colon which develop subsequent to dimethylhydrazine administration in rodents. The present findings suggest that a plausible mechanism is the selective inhibition of cytochrome P450IIE1, which is involved in the initial hepatic activation of the procarcinogen (14). This isozyme activity is conveniently assayed in microsomes by monitoring the demethylation at 1 mM NDMA (18).

Two modes of inhibition by DAS of NDMA demethylase activity were evident. The first type, observed in incubations using acetone-induced microsomes, was competitive inhibition. The low apparent Kᵢ suggested that DAS has a high affinity for P450IIE1 which would be in agreement with previous studies using structurally analogous compounds such as diethyl ether (Kᵢ 13 μM) and pentane (Kᵢ 9 μM)(see Ref. 19). The presence of a small hydrophobic binding pocket at the active site has been proposed and would accommodate DAS and similar compounds. As expected, the observed inhibition was selective toward NDMA metabolism, as compared with the oxidation of substrates catalyzed by other P-450 isozymes (Table 1).

The possibility of irreversible inactivation was considered since substrates containing carbon-carbon double bonds are often involved in the destruction of P-450 (23). Furthermore, a potential product of the P-450-dependent oxidation of a compound such as DAS is the sulfhydryl-reactive reagent, acrolein (OCHCH=CH₂) (23, 24). However, no evidence for an irreversible inhibition by DAS was observed. The effect of varying the concentration of DAS was not determined but could influence the observed inhibition (24). Preliminary experiments using gas chromatographic analysis showed that initial levels of DAS decreased in incubations containing NADPH. Two...
microsomal enzyme systems, a flavin-containing monooxygenase and P-450, oxidize sulfur-containing compounds (25–27). Determination of the products and enzyme specificity of DAS metabolism will require further investigation.

A second mode of inhibition of NDMA demethylase was observed after DAS administration in vivo. The selective suppression in the activity and in the immunologically determined levels of P450IIIE1 could substantially contribute to the reported chemoprotective properties of DAS. The inactivation was time dependent, suggesting a requirement for metabolism and redistribution of this thioether. The in vivo metabolic fate of the compound is unknown but may be examined by using radiolabeled substrate (28). The decrease in the level of P450IIIE1 could also be due to an inhibition in the production of this isozyme.

ACKNOWLEDGMENTS

The authors would like to thank Shu M. Ning and Mao-Jung Lee for expert technical assistance, Dr. David Wade for the preparation of purified P450IIIB1, and Harold L. Newmark and Dr. Michael J. Wargovich for helpful discussions.

REFERENCES

Effect of Diallyl Sulfide on Rat Liver Microsomal Nitrosamine Metabolism and Other Monooxygenase Activities

John F. Brady, Dechun Li, Hiroyuki Ishizaki, et al.

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/48/21/5937

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.