Inhibitory Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on Tumor Promotion in Mouse Skin by 12-O-Tetradecanoylphorbol-13-acetate

Mou-Tuan Huang, Robert C. Smart, Ching-Quo Wong, and Allan H. Conney

ABSTRACT

The effects of topical application of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced epidermal ornithine decarboxylase activity, epidermal DNA synthesis, and the promotion of skin tumors were evaluated in female CD-1 mice. Topical application of 0.5, 1, 3, or 10 μmol of curcumin inhibited by 31, 46, 84, or 98%, respectively, the induction of epidermal ornithine decarboxylase activity by 5 nmol of TPA. In an additional study, the topical application of 10 μmol of curcumin, chlorogenic acid, caffeic acid, or ferulic acid inhibited by 91, 25, 42, or 46%, respectively, the induction of ornithine decarboxylase activity by 5 nmol of TPA. The topical application of 10 μmol of curcumin together with 2 or 5 nmol of TPA inhibited the TPA-dependent stimulation of the incorporation of [3H]thymidine into epidermal DNA by 49 or 29%, respectively, whereas lower doses of curcumin had little or no effect. Chlorogenic acid, caffeic acid, and ferulic acid were less effective than curcumin as inhibitors of the TPA-dependent stimulation of DNA synthesis. Topical application of 1, 3, or 10 μmol of curcumin together with 5 nmol of TPA twice weekly for 20 weeks to mice previously initiated with 7,12-dimethylbenz[a]anthracene inhibited the number of TPA-induced tumors per mouse by 39, 77, or 98%, respectively, and higher doses of the phenolic acids caused a more pronounced inhibition of tumor promotion. The possibility that curcumin could inhibit the action of arachidonic acid was evaluated by studying the effect of curcumin on arachidonic acid-induced edema of mouse ears. The topical application of 3 or 10 μmol of curcumin 30 min before the application of 1 μmol of arachidonic acid inhibited arachidonic acid-induced edema by 33 or 80%, respectively.

INTRODUCTION

The ground dried rhizome of the plant Curcuma longa Linn has been used for centuries as a naturally occurring medicine for the treatment of inflammatory and other diseases (1, 2), and it has also been used as a coloring agent and spice in many foods. The powdered rhizome is commonly called turmeric. Curcumin (diferuloylmethane; Fig. 1) has been identified as the major pigment in turmeric, and this substance has also been used as a spice, food preservative, and yellow coloring agent (3-5). Curcumin, which is widely used in curry, is responsible for the yellow color of curry. Turmeric contains 1-5% curcumin while the curcumin content of turmeric oleoresin is approximately 40% (6).

Recent studies have indicated that several compounds that possess antioxidant or antiinflammatory activity inhibit TPA1-induced tumors on mouse skin (7-12). Since curcumin has been reported to possess both antioxidant and antiinflammatory activity (13-17), we have evaluated the effect of curcumin on TPA-induced tumor promotion on mouse skin, and we have also evaluated the effects of the related compounds chlorogenic acid, caffeic acid, and ferulic acid as potential inhibitors of tumor promotion.

MATERIALS AND METHODS

Materials. TPA was purchased from CRC Inc., Chanhassen, MN. DL-[14C]Ornithine (58 Ci/mmol) and [3H]thymidine (5 Ci/mmol) were purchased from Amersham Corp., Arlington Heights, IL. trans-Retinoic acid was obtained from Hoffmann-La Roche Inc., Basle, Switzerland. Fluocinolone acetonide, nonradioactive DL-ornithine, curcumin, chlorogenic acid, caffeic acid, and ferulic acid were purchased from the Sigma Chemical Co., St. Louis, MO, and DMBA was purchased from Calbiochem-Behring, San Diego, CA. Aquasol was purchased from New England Nuclear, Boston, MA. Acetone and dimethyl sulfoxide were purchased from Burdick & Jackson Laboratories, Muskegon, MI. Arachidonic acid was purchased from Nu-Chek Prep Inc., Elysian, MN.

Animals. Seven-week-old female CD-1 mice were purchased from Charles River Laboratories, Kingston, NY, and kept in our animal facility at least 1 week before use. Mice were fed a Purina Laboratory Chow 5001 diet ad libitum (Ralston-Purina Co., St. Louis, MO) and kept on a 12-h light, 12-h dark cycle. Mice were provided drinking water ad libitum. The dorsal region of each mouse was shaved with electric clippers at least 2 days before treatment with TPA or DMBA. Only mice that did not show signs of hair regrowth were used. All compounds were applied to the dorsal shaved area of 8- to 9-week-old mice in 200 μl acetone or 200 μl of acetone:DMSO (90:10).

Ornithine Decarboxylase Assay and Preparation of Epidermal Homogenates. The preparation of epidermal homogenate and the determination of ornithine decarboxylase activity were done as described previously (18). Mice were treated topically with 200 μl of acetone, with TPA in acetone, or with curcumin and TPA together in acetone. In experiments with chlorogenic acid, caffeic acid, and ferulic acid, mice were treated with 200 μl of acetone:DMSO (90:10), with TPA in acetone:DMSO, or with the test compound and TPA together in acetone:DMSO. Five h after treatment, the mice were sacrificed by cervical dislocation, and the dorsal area of the skin was removed. In order to remove the epidermis from the dermis, the skins were plunged into a 58°C water bath for 30 s, and then the skins were immediately submerged in an ice water bath as described by Slaga et al. (19). The epidermis was removed from the dermis by gentle scraping and placed in 1 ml of 50 mM potassium phosphate, pH 7.7, buffer containing 2 mM dithiothreitol and 0.1 mM EDTA. The epidermis was homogenized on ice for 30 s with a Tekmar polytron tissumizer at full setting. The epidermal homogenate was centrifuged at 11,000 x g for 30 min at 4°C and the supernatant fraction was removed and stored overnight at −20°C prior to the determination of ornithine decarboxylase activity as described earlier (18). Protein was determined by the method of Lowry et al., using bovine serum albumin as the standard (20).

Quantitation of Epidermal DNA Synthesis. Mice were treated topically with 200 μl acetone, TPA in acetone, or curcumin and TPA together in acetone. Acetone:DMSO (90:10) was the solvent for experiments with chlorogenic acid, caffeic acid, and ferulic acid. At 18 h after treatment, 10 μl of [3H]thymidine solution (5 Ci/mmol, 1 mCi/ml) were injected i.p. into each mouse, and 40 min later the mice were sacrificed by cervical dislocation. The isolation of epidermal DNA and determination of the incorporation of [3H]thymidine into DNA was done as previously described (18).

Tumor Studies on Mouse Skin. The dorsal region of 7-week-old...
female CD-1 mice was shaved with an electric clipper. Two days later groups of 30 mice were treated topically with 200 nmol DMBA in 200 µl acetone, and control mice received 200 µl of acetone alone. After 1 week, mice were treated topically with 200 µl of acetone, 5 nmol TPA, or 5 nmol TPA applied simultaneously with curcumin in 200 µl of acetone twice weekly for 20 weeks. In another tumor study designed to evaluate the effect of chlorogenic acid, caffeic acid, and ferulic acid on TPA-induced tumor formation, acetone:DMSO (90:10) was used as the solvent because chlorogenic acid at the doses examined was not completely soluble in acetone. Tumors of at least 1 mm in diameter were counted and recorded once every 2 weeks, and the results are expressed as the average number of tumors per mouse and percentage of tumor-bearing mice. Control mice that were first initiated with 200 nmol DMBA and then treated with 3 µmol curcumin in acetone or acetone alone twice weekly for 20 weeks also were examined. Likewise, control mice treated with acetone alone in place of DMBA and then treated twice weekly with 5 nmol TPA in 200 µl acetone for 20 weeks were also included in the study.

RESULTS

Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on TPA-induced Ornithine Decarboxylase Activity in Mouse Epidermis. The effect of topically applied curcumin, chlorogenic acid, caffeic acid, or ferulic acid on TPA-induced ornithine decarboxylase activity in mouse epidermis was examined and the results are shown in Table 1. Curcumin strongly inhibited the TPA-induced increase in epidermal ornithine decarboxylase activity in a dose-dependent manner. Topical application of 0.5, 1, 3, or 10 µmol of curcumin with 5 nmol of TPA inhibited the TPA-induced increase in epidermal ornithine decarboxylase activity by 31, 46, 84, or 98%, respectively. Application of trans-retinoic acid (1.3 nmol), a known inhibitor of TPA-induced ornithine decarboxylase activity (21), inhibited the TPA-induced increase in epidermal ornithine decarboxylase activity by 88%. The effects of several naturally occurring phenolic acids that are structurally related to curcumin were studied (Table 1, experiment 2). Topical application of 10 µmol of chlorogenic acid, caffeic acid, or ferulic acid inhibited TPA-induced increases in ornithine decarboxylase activity by 25, 42, or 46%, respectively, and higher doses of the phenolic acids resulted in greater inhibition. The results of these studies indicate that curcumin is about 10-fold more active than the phenolic acids. The results of an additional study indicated that an i.p. injection of curcumin could inhibit the induction of ornithine decarboxylase activity in mouse epidermis that occurred after the topical application of TPA. The i.p. injection of 40 or 120 µmol of curcumin (dissolved in dimethyl sulfoxide) into mice 1 h before the topical application of 5 nmol TPA inhibited the induction of epidermal ornithine decarboxylase activity by 46 or 86%, respectively (data not shown). During the course of this study, it was found that curcumin in the vehicle precipitated out of solution in the abdominal cavity and thus may not have been completely bioavailable. Curcumin could be seen as yellow flecks in the abdominal cavity throughout the experimental period of 6 h.

Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on TPA-induced DNA Synthesis in Mouse Epidermis. Topical application of 1, 3, or 10 µmol of curcumin together with 2 nmol of TPA inhibited the TPA-induced increase in DNA synthesis by 4, 14, or 49%, respectively (Table 2, experiment 1). The topical application of fluorocine acetone (2 nmol), a known inhibitor of TPA-induced DNA synthesis, inhibited the TPA-induced increase by 86%. Topical application of 1, 3, or 10 µmol of curcumin simultaneously with 5 nmol of TPA inhibited the TPA-induced increase in the incorporation of [3H]thymidine into epidermal DNA by 3, 4, or 29%, respectively (Table 2, experiment 2). Topical application of 20 µmol of chlorogenic acid, caffeic acid, or ferulic acid together with 5 nmol of TPA inhibited the TPA-induced increase in the incorporation of [3H]thymidine into epidermal DNA by 7, 33, or 15%, respectively.

Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on TPA-induced Tumor Promotion in Mouse Epidermis. CD-1 mice initiated with 200 nmol of DMBA and promoted with 5 nmol of TPA twice weekly for 20 weeks developed an average of 16.4 tumors/mouse. Topical application of 1, 3, or 10 µmol of curcumin with 5 nmol of TPA twice a week for 20 weeks inhibited the number of skin tumors per mouse by 39, 77, or 98%, respectively, and the percentage of animals with tumors was decreased by 21, 66, or 82%, respectively (Fig. 2). Additional groups of mice were initiated with DMBA and then treated with acetone or 3 µmol of curcumin twice weekly for 20 weeks. None of these animals developed tumors, indicating that curcumin was not a tumor promoter. In a second experiment, mice that were initiated with 200 nmol of DMBA and promoted with 5 nmol of TPA twice weekly for 19 weeks developed an average of 6.2 tumors/mouse. In this experiment, topical application of 10 µmol of curcumin, chlorogenic acid, caffeic acid, or ferulic acid together with 5 nmol of TPA twice a week for 19 weeks inhibited the number of tumors per mouse by 100, 60, 28, or 35%, respectively, and the percentage of animals with tumors was inhibited 100, 31, 28, or 7%, respectively (Table 3). The topical application of 20 µmol chlorogenic acid, 20 µmol caffeic acid, or 50 µmol ferulic acid inhibited the average number of tumors per mouse by 91, 82, or 97%, respectively, and the percentage of animals with tumors was inhibited 61, 43, or 80%, respectively (Table 3).

Effect of Curcumin on TPA- and Arachidonic Acid-induced Edema of Mouse Ears. The possibility that curcumin could inhibit TPA- and arachidonic acid-dependent inflammation was evaluated by studying the effects of curcumin on TPA- and arachidonic acid-induced edema of mouse ears. The application of 0.4 or 1 µmol of curcumin to an ear of the mouse 30 min before 0.5 nmol of TPA inhibited TPA-induced edema by 79 or 97%, respectively (Table 4, experiment 1). In additional
Forty min later the mice were sacrificed, the epidermis was removed and radioactivity in epidermal DNA was determined. Data are expressed as the mean ± SE of 16 mice. Studies, the application of 3 or 10 µmol of curcumin to an ear of the mouse 30 min before 1 µmol of arachidonic acid inhibited arachidonic acid-induced edema by 33 or 80%, respectively (Table 4, experiment 2). In another experiment, the topical application of 1.5 or 5 µmol of curcumin 30 min before 1 µmol of arachidonic acid inhibited arachidonic acid-induced edema by 32 or 58%, respectively (Table 4, experiment 3). Phenidone and nordihydroguaiaretic acid are known inhibitors of arachidonic acid metabolism (22, 23), and both of these compounds were effective inhibitors of arachidonic acid-induced edema (Table 4, experiments 2 and 3).

DISCUSSION

The results of the present study demonstrate that topical application of curcumin inhibits TPA-induced epidermal ornithine decarboxylase activity, epidermal DNA synthesis, and promotion of skin tumors in mice. The related compounds chlorogenic acid, caffeic acid, and ferulic acid are also active as inhibitors of TPA-induced tumor promotion and ornithine decarboxylase activity in mouse skin, but these compounds are less effective than curcumin. Curcumin is widely used as a yellow coloring agent and spice in commonly ingested foods, and chlorogenic acid, caffeic acid, and ferulic acid are normally occurring constituents of many human foods and beverages. Application of TPA to mouse skin results in the rapid accumulation of inflammatory cells such as neutrophils and macrophages (24) and an increase in the release of active oxygen species (25, 26). As shown in Table 4, curcumin markedly inhibited TPA- and arachidonic acid-induced inflammation. The results could be explained by a possible effect of curcumin to inhibit the infiltration of inflammatory cells and/or to inhibit the release and action of reactive oxygen species from these cells.

It has been suggested that reactive oxygen species and other free radicals play an important role in tumor promotion (24-27). Free radical-generating compounds such as benzoyl peroxide, laurol peroxide, and chloroperbenzoic acid have tumor-promoting properties, whereas antioxidants such as curcumin are effective inhibitors of TPA-induced tumor promotion. The results of the present study confirm these observations and suggest that curcumin, which is a powerful antioxidant, may have potential as a preventative therapy for certain types of cancer.
TPA to mouse skin has been shown to stimulate the release of biochemical events associated with tumor promotion in mouse skin. Thirty mice/group were initiated with 200 nmol of DMBA. One week later the mice were treated topically with 5 nmol TPA alone or together with various doses of curcumin in 200 μl acetone twice a week for 20 weeks. A; tumors/mouse; B, percentage of mice with tumors.

Promoting activity on mouse skin (27–29), and application of TPA to mouse skin has been shown to stimulate the release and metabolism of arachidonic acid (30–33) and to increase the formation of reactive oxygen species (25, 26). Superoxide dismutase is an important enzymatic defense for the removal of superoxide anion, and the biomimetic copper(II) (3,4-dihydropropylsalcyclic acid), which possesses superoxide dismutase activity, has been demonstrated to inhibit TPA-induced ornithine decarboxylase activity and tumor promotion in mouse skin (34, 35). Several inhibitors of TPA-dependent tumor promotion possess antioxidant activity. Butylated hydroxytoluene (10), butylated hydroxyanisole (10, 25), sodium selenite (36), quercetin (37), nordihydroguaiaretic acid (38), α-tocopherol (39), ascorbic acid (12), and ascorbyl palmitate (12) are examples of compounds that possess antioxidant or reactive oxygen scavenging activity and that inhibit tumor promotion and/or certain biochemical events associated with tumor promotion in mouse skin. Although the antioxidant activity of chlorogenic acid has not been compared with that of curcumin, the relative antioxidant activities of curcumin, caffeic acid, and ferulic acid roughly parallel the effects of these compounds as inhibitors of tumor promotion (see Ref. 13 and Table 3).

Several inhibitors of arachidonic acid metabolism inhibit TPA-dependent tumor promotion in mouse skin (37, 38, 40, 41), and it is thought that products of arachidonic acid metabolism may play an important role in the tumor promotion process. Mouse epidermis has been reported to possess Δ⁵-, Δ⁶-, Δ⁷-, and Δ⁹-lipoxygenase activity (37, 42–44). HPETEs and HETEs, leukotrienes, and prostaglandins are among the arachidonic acid metabolic products that are believed to play a role in TPA-induced inflammation and tumor promotion (45–47). It was found that TPA stimulates cell proliferation and increases the production of HETEs and prostaglandins in epidermal cell culture (44). In addition, inhibition of arachidonic acid metabolism results in lowered levels of HETEs and prostaglandins in human platelets (48). These products of arachidonic acid metabolism may be important in cell proliferation since high levels of arachidonic acid, HPETEs, and HETEs are found in the hyperproliferative disease psoriasis (49). Fluocinonolone acetonide and other glucocorticoids represent another class of potent inhibitors of TPA-dependent tumor promotion (7), and these steroids are inhibitors of epidermal phospholipase A₂ activity in vivo and inhibit the release of arachidonic acid from cellular membranes (50). Nordihydroguaiaretic acid and quercetin are examples of Δ⁵-lipoxygenase inhibitors that also inhibit the TPA-dependent induction of ornithine decarboxylase activity and tumor promotion in mouse skin (23, 37, 41). As indicated above, arachidonic acid metabolism is believed to give rise to reactive oxygen species and other free radicals, and studies on the TPA-induced generation of reactive oxygen species in mouse epidermal cells have indicated that inhibitors of arachidonic acid metabolism can diminish the chemiluminescence response that is associated with the generation of free radicals (51). It is possible that arachidonic acid metabolism may provide a source of free radicals that play a role in tumor promotion. The inhibitory effect of curcumin on arachidonic acid-dependent ear edema (Table 4) suggests that curcumin may block arachidonic acid metabolism by inhibiting epidermal cyclooxygenase and/or lipooxygenase activity, or that curcumin may serve as a scavenger of reactive free radicals which are produced during the metabolism of arachidonic acid. It is also possible that curcumin can interfere with the activity of epidermal phospholipase A₂ and/or inhibit TPA-induced release of arachidonic acid from membranes, since curcumin appears to be a more potent inhibitor of TPA-induced mouse ear edema than arachidonic acid-induced ear edema (Table 4). Additional studies are needed to determine the possible inhibitory effects of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on the promotion of tumors in mouse skin.

Table 3 Effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on TPA-induced tumor promotion in mouse skin

Female mice were treated topically with 200 nmol of DMBA in 200 μl of acetone. One week later the mice were treated topically with 5 nmol of TPA alone or together with curcumin, chlorogenic acid, caffeic acid, or ferulic acid in 200 μl of acetone:DMSO (90:10) twice a week for 19 weeks. The tumors per mouse are expressed as the mean ± SE from 30 mice.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>11 wk</th>
<th>15 wk</th>
<th>19 wk</th>
<th>11 wk</th>
<th>15 wk</th>
<th>19 wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone:DMSO (90:10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TPA (5 nmol)</td>
<td>48.3</td>
<td>60.7</td>
<td>67.9</td>
<td>3.79±0.13</td>
<td>5.53±0.14</td>
<td>6.18±0.14</td>
</tr>
<tr>
<td>TPA (5 nmol) + chlorogenic acid</td>
<td>23.3</td>
<td>40.0</td>
<td>46.6</td>
<td>0.91±0.44</td>
<td>2.50±0.75</td>
<td>2.50±0.78</td>
</tr>
<tr>
<td>(10 μmol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPA (5 nmol) + chlorogenic acid</td>
<td>6.7</td>
<td>6.7</td>
<td>26.7</td>
<td>0.07±0.05</td>
<td>0.53±0.10</td>
<td>0.53±0.05</td>
</tr>
<tr>
<td>(20 μmol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPA (5 nmol) + caffeic acid</td>
<td>24.7</td>
<td>43.3</td>
<td>46.7</td>
<td>3.47±0.09</td>
<td>4.43±1.53</td>
<td>4.43±1.89</td>
</tr>
<tr>
<td>(10 μmol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPA (5 nmol) + caffeic acid</td>
<td>11.5</td>
<td>23.0</td>
<td>38.5</td>
<td>0.31±0.21</td>
<td>1.12±0.49</td>
<td>1.12±0.67</td>
</tr>
<tr>
<td>(20 μmol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPA (5 nmol) + ferulic acid</td>
<td>34.5</td>
<td>44.8</td>
<td>63.5</td>
<td>2.21±0.96</td>
<td>4.00±1.02</td>
<td>4.00±1.19</td>
</tr>
<tr>
<td>(10 μmol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPA (5 nmol) + ferulic acid</td>
<td>0</td>
<td>3.3</td>
<td>13.3</td>
<td>0</td>
<td>0.17±0.08</td>
<td>0.17±0.03</td>
</tr>
<tr>
<td>(50 μmol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPA (5 nmol) + curcumin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Statistically different from TPA alone (P < 0.05).
Table 4 Effect of curcumin on TPA- and arachidonic acid-induced edema of mouse ears

In experiment 1, female CD-I mice (10 animals/group) were treated on the right ear with 25 μl of acetone or curcumin in acetone 30 min before the application of 25 μl of acetone or TPA in acetone. The mice were sacrificed 5 h later by cervical dislocation, and ear punches from two animals were weighed together (6-mm-diameter punch/animal). In experiments 2 and 3, female CD-I mice (10 animals per group) were treated on the right ear with 25 μl of acetone or curcumin in acetone 30 min before the application of 25 μl of acetone or 1 μmol of arachidonic acid in acetone. The mice were sacrificed 1 h later by cervical dislocation, and ear punches from two animals were weighed together (6-mm-diameter punch/animal). The data from each group represents the mean ± SE from 5 pooled samples obtained from 10 mice.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Treatment</th>
<th>W/punch (mg)</th>
<th>Percent inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acetone</td>
<td>7.35 ± 0.17°</td>
<td>11.74 ± 0.53°</td>
</tr>
<tr>
<td></td>
<td>TPA (0.5 nmol)</td>
<td>12.78 ± 0.53°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPA (0.5 nmol) + curcumin (0.4 μmol)</td>
<td>8.51 ± 0.30°</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>TPA (0.5 nmol) + curcumin (1 μmol)</td>
<td>7.49 ± 0.19°</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>TPA (0.5 nmol) + curcumin (3 μmol)</td>
<td>6.78 ± 0.09°</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>TPA (0.5 nmol) + curcumin (10 μmol)</td>
<td>7.08 ± 0.20°</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Acetone</td>
<td>7.11 ± 0.24°</td>
<td>11.57 ± 0.69°</td>
</tr>
<tr>
<td></td>
<td>Arachidonic acid (1 μmol)</td>
<td>10.11 ± 0.03°</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Arachidonic acid (1 μmol) + curcumin (3 μmol)</td>
<td>7.99 ± 0.28°</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Arachidonic acid (1 μmol) + curcumin (10 μmol)</td>
<td>8.45 ± 0.36°</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>Acetone</td>
<td>7.30 ± 0.14°</td>
<td>10.85 ± 0.63°</td>
</tr>
<tr>
<td></td>
<td>Arachidonic acid (1 μmol) + curcumin (1.5 μmol)</td>
<td>9.70 ± 0.72°</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Arachidonic acid (1 μmol) + curcumin (5 μmol)</td>
<td>8.80 ± 0.29°</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Arachidonic acid (1 μmol) + nortidihydroglauceric acid (1.5 μmol)</td>
<td>9.07 ± 0.31°</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Arachidonic acid (1 μmol) + nortidihydroglauceric acid (5 μmol)</td>
<td>8.98 ± 0.30°</td>
<td>53</td>
</tr>
</tbody>
</table>

*Statistically different from TPA or arachidonic acid alone (P < 0.05).

Curcumin, chlorogenic acid, caffeic acid, and ferulic acid, and ferulic acid on tumor promotion by TPA in the two-stage initiation-promotion model in mouse skin, suggests a need for additional studies with these compounds in several other experimental carcinogenesis models. These studies are particularly important because of the widespread dietary ingestion of curcumin, chlorogenic acid, caffeic acid, ferulic acid, and other plant phenolics in varying proportions and amounts by the human population.

REFERENCES

INHIBITION OF TPA-INDUCED TUMOR PROMOTION

40. Fischer, S. M., Mills, G. D., and Slaga, T. J. Inhibition of mouse skin tumor
46. Camp, R. O. R. Prostaglandins, hydroxyfatty acids, leukotrienes, and inflam-
44. Fischer, S. M., Baldwin, J. K., Jasheway, D. W., Patrick, K. E., and Cameron,
43. Gschwendt, M., Furstenberger, G., Kittstein, W., Besemefeld, E., Hull, W. of
42. Perrett, H. J., and Oprea, T. I., and Marks, F. Generation of the arachidonic
41. Nakadate, T., Yamamoto, S., Ishii, M., and Kato, R. Inhibition of 12-0-
tetradecanoylphorbol-13-acetate-induced epidermal ornithine decarboxylase
activity by phospholipase A2 inhibitors and lipoygenase inhibitors. Cancer
lipoygenase activities in cytosol and microsomal fractions of mouse epider-
38. Nakadate, T., Yamamoto, S., Ishii, M., and Kato, R. Inhibition of 12-O-
tetradecanoylphorbol-13-acetate-induced epidermal ornithine decarboxylase
activity by phospholipase A2 inhibitors and lipoygenase inhibitors. Cancer
34. Ford, H. M., Mills, G. D., and Slaga, T. J. Inhibition of mouse skin tumor
promotion by several inhibitors of arachidonic acid metabolism. Carcinogen-
33. Bresnicky, E., Bailey, G., Bonney, R. J., and Wightman, P. Phospholipase
activity in skin after application of phorbol esters and 3-methylcholanthrene.
Carcinogenesis (Lond.), 2: 1119–1222, 1981.
32. Bresnicky, E., Meunier, P., and Lamed, M. Epidermal prostaglandins after
31. Bresnicky, E., Meunier, P., and Lamed, M. Epidermal prostaglandins after
30. Klein-Szanto, A. J. P., and Slaga, T. J. Effects of peroxides on rodent skin:
34, 1982.
29. Klein-Szanto, A. J. P., and Slaga, T. J. Effects of peroxides on rodent skin:
34, 1982.
28. Lewis, J. G., and Adams, D. O. Early inflammatory changes in the skin of
27. Slaga, T. J., Das, S. B., Rice, J. M., and Thompson, S. Fractionation of
1974.
24. Lewis, J. G., and Adams, D. O. Early inflammatory changes in the skin of
22. Verma, A. K., and Boutwell, R. K. Vitamin A acid (retinoic acid), a potent
inhibitor of 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decar-
inhibitor of 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decar-
19. Slaga, T. J., Das, S. B., Rice, J. M., and Thompson, S. Fractionation of
1974.
18. Smart, R. C., Huang, M-T., and Conney, A. H. sn-l,2-Diacylglycerols mimic
the effects of 12-O-tetradecanoylphorbol-13-acetate in vivo by inducing bio-
chemical changes associated with tumor promotion in mouse epidermis.
Carcinogenesis (Lond.), 7: 1865–1870, 1986.
17. Mukhopadhyay, A., Basu, N., Ghatak, N., and Gujral, P. K. Anti-inflam-
matory and irritant activities of curcumin analogues in rats. Agents and
15. Mukhopadhyay, A., Basu, N., Ghatak, N., and Gujral, P. K. Anti-inflam-
matory and irritant activities of curcumin analogues in rats. Agents and
14. Fischer, S. M., Baldwin, J. K., Jasheway, D. W., Patrick, K. E., and Cameron,
hydroperoxy and hydroxy acid products of arachidonate lipoygenase in
11. Camp, R. O. R. Prostaglandins, hydroxyfatty acids, leukotrienes, and inflam-
Lewis, A. J. Correlation between mouse skin inflammation induced by
8. Lewis, J. G., and Adams, D. O. Early inflammatory changes in the skin of
SENCAR and C57BL/6 mice following exposure to 12-O-tetradecanoyl-
activity in skin after application of phorbol esters and 3-methylcholanthrene.
Carcinogenesis (Lond.), 2: 1119–1222, 1981.
5. Bresnicky, E., Meunier, P., and Lamed, M. Epidermal prostaglandins after
4. Ashendel, C. L., and Boutwell, R. K. Prostaglandin E and F levels in mouse
epidermis are increased by tumor-promoting phorbol esters. Biochem. Bio-
In: S. M. Fischer and T. J. Slaga (eds.), Arachidonic Acid Metabolism and Tumor
2. Fischer, S. M. Arachidonic acid metabolism and tumor promotion. In: S. M.
Fischer and T. J. Slaga (eds.), Arachidonic Acid Metabolism and Tumor
1. Smart, R. C., Huang, M-T., and Conney, A. H. sn-l,2-Diacylglycerols mimic
the effects of 12-O-tetradecanoylphorbol-13-acetate in vivo by inducing bio-
chemical changes associated with tumor promotion in mouse epidermis.
Carcinogenesis (Lond.), 7: 1865–1870, 1986.
Inhibitory Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on Tumor Promotion in Mouse Skin by 12- O-Tetradecanoylphorbol-13-acetate

Mou-Tuan Huang, Robert C. Smart, Ching-Quo Wong, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/48/21/5941

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.