Chemoprevention of N-Nitrosomethylbenzylamine-induced Esophageal Cancer in Rats by the Naturally Occurring Thioether, Diallyl Sulfide

Michael J. Wargovich, Cynthia Woods, Vincent W. S. Eng, L. Clifton Stephens, and Kenneth Gray

Section of Gastrointestinal Oncology and Digestive Diseases, Department of Medical Oncology [M. J. W., C. W.], and Division of Veterinary Medicine and Surgery [L. C. S., K. G.], The University of Texas, M. D. Anderson Hospital and Tumor Institute, Houston, Texas 77030, and Ludwig Institute for Cancer Research [V. W. S. E.], Toronto, Ontario M4Y 1M4, Canada

ABSTRACT

Diallyl sulfide (DAS) is a principal thioether of garlic (Allium sativum) accounting, in part, for the flavor and fragrance of this herb. Previous studies have shown that DAS is a potent inhibitor of experimentally induced colon cancer in mice. Metabolic studies of other garlic-derived substances suggested that DAS could prevent tumorigenicity of other hepatic activated carcinogens. The present study was designed to determine whether DAS could inhibit the DNA-damaging and tumorigenic effects of N-nitrosomethylbenzylamine in rat esophagus. A dose of 200 mg/kg of DAS given p.o. 3 h prior to N-nitrosomethylbenzylamine administration was found to inhibit the carcinogen-induced nuclear toxicity by 64% to 56% at the two doses (3 and 5 mg/kg) of NMBA tested. These results suggested that the compound was potentially anticarcinogenic. In the carcinogenicity experiment it was found that DAS totally inhibited tumor formation in rats treated with a carcinogenic dose of NMBA (100% inhibition of papilloma and squamous cell carcinoma incidence, \(P < 0.0001 \)). Additionally DAS was found to substantially reduce hepatic microsomal metabolism of the carcinogen. These data demonstrate that DAS is unique in its anticarcinogenic activity. It strongly suppresses the tumorigenic effects of potent, metabolically activated monoalkylating carcinogens in the gastrointestinal tract.

INTRODUCTION

DAS \(^3\) is one of several thioethers identified as flavor and fragrance components of garlic (1). Recent studies have focused on pharmacologically active elements in garlic that could account for the reported antithrombotic and antihypertensive effects of eating the herb (2, 3). Other investigators have examined garlic for its anticancer effects. Indeed, Belman (4) reported that the topical application of garlic or onion oil inhibited tumor promotion in DMBA/TPA-induced skin cancer in mice. His conclusions led us to test DAS for potential activity against intestinal carcinogens. Using the NA assay, we found DAS to be unique among the thioethers in garlic; it strongly inhibited the early nucleotoxic effects of dimethylhydrazine in the colons of mice (5). This result suggested that DAS could have anticarcinogenic properties; the compound was subsequently found to be a potent inhibitor of DMH-induced colon neoplasia (6). Because DMH undergoes partial metabolic activation in the liver to the proximate form of the carcinogen (7), we theorized that DAS could act by modulation of metabolic conversion of DMH and could affect similarly activated carcinogens.

NMBA reproducibly induces squamous cell carcinoma of the esophagus in Sprague-Dawley rats (8). NMBA also requires liver activation to achieve carcinogenic potency, although a final metabolic conversion in the esophagus may be necessary (9). Because of the similarities of DMH and NMBA metabolism, we investigated the ability of DAS to inhibit NMBA-induced esophageal cancer in rats. The data reported here clearly show DAS to be anticarcinogenic; in this study esophageal tumorigenicity, induced by NMBA, was completely inhibited by DAS, possibly by altering microsomal metabolism of the carcinogen.

MATERIALS AND METHODS

Chemicals. NMBA was synthesized according to the methods of White (10), purified under reduced pressure, and a gift provided by Dr. Peter Zucker of the Ontario Cancer Institute, Toronto, Ontario, Canada. DAS was purchased from Aldrich Chemical Co., Milwaukee, WI; its purity was at least 97% by high-pressure liquid chromatography separation.

Animals and Treatments. Male Sprague-Dawley rats (Charles River, Wilmington, MA) were purchased at 100 to 125 g of initial body weight. The first shipment of 18 rats was used for nuclear aberration assay. The animals were housed 3 to a cage and given constant access to laboratory chow and water. The light-dark cycle alternated every 12 h. For the nuclear aberration assay, the 18 rats were subdivided into 6 groups of 3 animals each. Since we observed maximal anticarcinogenic activity for DAS at a dose of 200 mg/kg in our previous study, this dose was retained for the current investigation (6). Groups 1, 2, and 3 received 200 mg/kg of DAS (mixed in corn oil) intragastrically (i.g.) 3 h prior to administration of NMBA; Groups 4, 5, and 6 received only corn oil i.g. NMBA was dissolved in saline and injected s.c. at a dose of either 3 mg/kg (Groups 1 and 4) or 5 mg/kg (Groups 2 and 5). Groups 3 and 6 received only an s.c. injection of saline. Animals were killed 24 h following NMBA injection, and the esophagi were removed and processed for NA analysis.

For the carcinogenicity experiment, 90 rats were assigned to one of 4 groups. Group I (30 rats) and Group II (30 rats) were given injections of NMBA (3.5 mg/kg, s.c.) once per wk for 5 wk; Groups III (15 rats) and IV (15 rats) received injections of saline, s.c., in lieu of NMBA. Three h prior to each weekly injection of NMBA, Groups I and III were given DAS i.g. at a dose of 200 mg/kg in corn oil, and Groups II and IV were gavaged with corn oil only. Animals were fed standard chow and water ad libitum. DAS or vehicle was given to the rats 3 h prior to NMBA based on our previous findings in a DMH-induced colon tumorigenesis experiment (6). Subsequent time course studies with DMH indicate maximal inhibition of DMH during this time. The light-dark cycle was identical to that of the first experiment. After 15 wk, all animals were killed by CO2 asphyxiation, and necropsies were performed.

Nuclear Aberration Assay. Tissue preparation, staining techniques, and descriptive histology for the NA assay have been previously reported (11). For our experiments, the frequency of NA per 500 basal esophageal epithelial cells was scored. Previously published criteria to ensure nonbias were observed (12). The results are reported as the percentage of nuclear aberrations.

Received 6/3/88; revised 8/16/88; accepted 8/18/88.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

\(^1\) Supported in part by a grant from the Milheim Foundation for Cancer Research; Development Funds, The University of Texas System Cancer Center; and by National Cancer Institute Cancer Center Support (Grant CA-16672), Centralized Histopathology Laboratory.

\(^2\) To whom requests for reprints should be addressed, at Section of Gastrointestinal Oncology and Digestive Diseases, Box 78, University of Texas-M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030.

\(^3\) The abbreviations used are: DAS, diallyl sulfide; NMBA, N-nitrosomethylbenzylamine; DMBA, dimethylbenz[a]anthracene; TPA, tetradecanoylphorbolacetate; HPLC, high-pressure liquid chromatography.

A. Baer, unpublished observation.
INHIBITION OF ESOPHAGEAL CANCER BY DIALLYL SULFIDE

Abstract

Diallyl sulfide (DAS) is a naturally occurring compound found in garlic. Our previous study suggested the anticarcinogenic potency of DAS. In our current study, we investigated the effect of DAS on the metabolism of esophageal carcinogen N-methyl-N-nitrosourea (NMBA). DAS inhibited the metabolic conversion of NMBA as measured in vitro using liver or esophageal microsomes prepared from rats that received DAS. The extent of the inhibition, that is, the complete inhibition observed from the tumorigenicity study, was not observed. Treatment with DAS did not fully inhibit the induction of nuclear aberrations.

RESULTS

Nuclear Aberration Study. The esophagus of rats treated with DAS showed less evidence of the DNA-damaging effects of NMBA as expressed by a reduced frequency of nuclear aberrations (Table 1). At the doses of NMBA tested, DAS pretreatment inhibited the necrotic effect of the esophageal carcinogen by ~56% to 64%. These data suggested that, as short as 3 h prior to NMBA administration, DAS was active in preventing genotoxic events at the target organ. The data also suggested that NMBA could be a potential inhibitor of esophageal tumorigenesis if tested in a carcinogenesis protocol.

NMBA Metabolism Studies: Effect of DAS. Both hepatic and esophageal microsomes from the treated rats converted NMBA to benzoaldehyde as shown in Table 2. DAS treatment resulted in a significant reduction in the microsomal conversion of NMBA. However, only hepatic microsomes were affected; metabolism of NMBA using esophageal microsomes was unaffected by pretreatment with DAS. Taken together these results suggest that modification of carcinogen metabolism may only, in part, account for the anticarcinogenic potency of DAS.

Outcome of Esophageal Carcinogenicity Study. Esophageal tumor incidence and frequency of lesions graded according to histological criteria are illustrated in Table 3. Only rats that received NMBA alone developed esophageal tumors. No histological evidence of premalignant or malignant neoplasms was found in the control or in DAS-treated groups. Rats receiving DAS and NMBA routinely demonstrated normal histology markedly similar to that of control animals.

DISCUSSION

Members of the Allium family are excellent sources of organic sulfides (15). A long anecdotal history of the curative properties of herbs in this family has suggested that some pharmacological compounds could be present (16). Investigation of organic sulfides for anticarcinogenic or chemopreventative properties was first attempted by Belman (4) and more recently by Sparnins et al. (17, 18). In our previous study we found DAS to strongly inhibit DMH-induced colon cancer in mice (6). In tracer studies, labeled diallyl disulfide, a close analogue of DAS found in garlic, was shown by Pushpandran to be rapidly taken up by the liver (19). Carcinogens such as NMBA and DMH require hepatic activation, and it is possible that some interaction between DAS and the carcinogen may occur.

The results of this study provide some evidence that DAS can modify NMBA metabolism, partially accounting for the observed significant reduction in tumorigenicity in rats pretreated with the thioether. The extent of the inhibition, that is, the complete inhibition observed from the tumorigenicity study, can not be fully explained by the results of metabolic studies. It is possible that the metabolic conversion of NMBA involves more than one P-450 isozyme, and our results can be taken only as indirect evidence for the mechanism of action. Moreover, DAS did not fully inhibit the induction of nuclear ather-

Table 1 Suppression of NMBA toxicity by DAS in rat esophagus

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% of nuclear aberrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 mg/kg</td>
</tr>
<tr>
<td>NMBA</td>
<td>1.3</td>
</tr>
<tr>
<td>NMBA + DAS</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 2 Effect of DAS on microsomal metabolism of NMBA

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Esophagus</th>
<th>Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn oil</td>
<td>19.6</td>
<td>33.0 ± 12.1</td>
</tr>
<tr>
<td>DAS (200 mg/kg)</td>
<td>22.5</td>
<td>7.7 ± 0.8</td>
</tr>
</tbody>
</table>

* Corn oil or DAS was administered by gavage at ~3 h. Rats were killed at 0 h and microsomes prepared.

b Pooled esophageal microsomes from 5 rats; mean.

Mean ± SEM.

P = 0.5.
INHIBITION OF ESOPHAGEAL CANCER BY DIALLYL SULFIDE

Fig. 1: A series illustrating the spectrum of proliferative lesions in rat esophagus. H & E, x 250. All magnifications. A, normal epithelium from control rat. B, dysplastic epithelium from rat treated with DMBA. C, carcinoma in situ. D, invasive adenocarcinoma. E, normal epithelium from rat treated with DMBA and DAS. F, dysplastic changes in rat treated with DMBA and DAS. G, invasive adenocarcinoma in rat treated with DMBA and DAS. H, normal epithelium from rat treated with DMBA and DAS. I, dysplastic changes in rat treated with DMBA and DAS. J, invasive adenocarcinoma in rat treated with DMBA and DAS. K, normal epithelium from rat treated with DMBA and DAS. L, dysplastic changes in rat treated with DMBA and DAS. M, invasive adenocarcinoma in rat treated with DMBA and DAS. N, normal epithelium from rat treated with DMBA and DAS. O, dysplastic changes in rat treated with DMBA and DAS. P, invasive adenocarcinoma in rat treated with DMBA and DAS. Q, normal epithelium from rat treated with DMBA and DAS. R, dysplastic changes in rat treated with DMBA and DAS. S, invasive adenocarcinoma in rat treated with DMBA and DAS. T, normal epithelium from rat treated with DMBA and DAS. U, dysplastic changes in rat treated with DMBA and DAS. V, invasive adenocarcinoma in rat treated with DMBA and DAS. W, normal epithelium from rat treated with DMBA and DAS. X, dysplastic changes in rat treated with DMBA and DAS. Y, invasive adenocarcinoma in rat treated with DMBA and DAS. Z, normal epithelium from rat treated with DMBA and DAS. AA, dysplastic changes in rat treated with DMBA and DAS. AB, invasive adenocarcinoma in rat treated with DMBA and DAS. AC, normal epithelium from rat treated with DMBA and DAS. AD, dysplastic changes in rat treated with DMBA and DAS. AE, invasive adenocarcinoma in rat treated with DMBA and DAS. AF, normal epithelium from rat treated with DMBA and DAS. AG, dysplastic changes in rat treated with DMBA and DAS. AH, invasive adenocarcinoma in rat treated with DMBA and DAS. AI, normal epithelium from rat treated with DMBA and DAS. AJ, dysplastic changes in rat treated with DMBA and DAS. AK, invasive adenocarcinoma in rat treated with DMBA and DAS. AL, normal epithelium from rat treated with DMBA and DAS. AM, dysplastic changes in rat treated with DMBA and DAS. AN, invasive adenocarcinoma in rat treated with DMBA and DAS. AO, normal epithelium from rat treated with DMBA and DAS. AP, dysplastic changes in rat treated with DMBA and DAS. AQ, invasive adenocarcinoma in rat treated with DMBA and DAS. AR, normal epithelium from rat treated with DMBA and DAS. AS, dysplastic changes in rat treated with DMBA and DAS. AT, invasive adenocarcinoma in rat treated with DMBA and DAS. AU, normal epithelium from rat treated with DMBA and DAS. AV, dysplastic changes in rat treated with DMBA and DAS. AW, invasive adenocarcinoma in rat treated with DMBA and DAS. AX, normal epithelium from rat treated with DMBA and DAS. AY, dysplastic changes in rat treated with DMBA and DAS. AZ, invasive adenocarcinoma in rat treated with DMBA and DAS. BA, normal epithelium from rat treated with DMBA and DAS. BB, dysplastic changes in rat treated with DMBA and DAS. BC, invasive adenocarcinoma in rat treated with DMBA and DAS. BD, normal epithelium from rat treated with DMBA and DAS. BE, dysplastic changes in rat treated with DMBA and DAS. BF, invasive adenocarcinoma in rat treated with DMBA and DAS. BG, normal epithelium from rat treated with DMBA and DAS. BH, dysplastic changes in rat treated with DMBA and DAS. BI, invasive adenocarcinoma in rat treated with DMBA and DAS. BJ, normal epithelium from rat treated with DMBA and DAS. BK, dysplastic changes in rat treated with DMBA and DAS. BL, invasive adenocarcinoma in rat treated with DMBA and DAS. BM, normal epithelium from rat treated with DMBA and DAS. BN, dysplastic changes in rat treated with DMBA and DAS. BO, invasive adenocarcinoma in rat treated with DMBA and DAS. BP, normal epithelium from rat treated with DMBA and DAS. BQ, dysplastic changes in rat treated with DMBA and DAS. BR, invasive adenocarcinoma in rat treated with DMBA and DAS. BS, normal epithelium from rat treated with DMBA and DAS. BT, dysplastic changes in rat treated with DMBA and DAS. BU, invasive adenocarcinoma in rat treated with DMBA and DAS. BV, normal epithelium from rat treated with DMBA and DAS. BW, dysplastic changes in rat treated with DMBA and DAS. BX, invasive adenocarcinoma in rat treated with DMBA and DAS. BY, normal epithelium from rat treated with DMBA and DAS. BZ, dysplastic changes in rat treated with DMBA and DAS. CA, invasive adenocarcinoma in rat treated with DMBA and DAS. CB, normal epithelium from rat treated with DMBA and DAS. CC, dysplastic changes in rat treated with DMBA and DAS. CD, invasive adenocarcinoma in rat treated with DMBA and DAS. CE, normal epithelium from rat treated with DMBA and DAS. CF, dysplastic changes in rat treated with DMBA and DAS. CG, invasive adenocarcinoma in rat treated with DMBA and DAS. CH, normal epithelium from rat treated with DMBA and DAS. CI, dysplastic changes in rat treated with DMBA and DAS. CJ, invasive adenocarcinoma in rat treated with DMBA and DAS. CK, normal epithelium from rat treated with DMBA and DAS. CL, dysplastic changes in rat treated with DMBA and DAS. CM, invasive adenocarcinoma in rat treated with DMBA and DAS. CN, normal epithelium from rat treated with DMBA and DAS. CO, dysplastic changes in rat treated with DMBA and DAS. CP, invasive adenocarcinoma in rat treated with DMBA and DAS. CQ, normal epithelium from rat treated with DMBA and DAS. CR, dysplastic changes in rat treated with DMBA and DAS. CS, invasive adenocarcinoma in rat treated with DMBA and DAS. CT, normal epithelium from rat treated with DMBA and DAS. CU, dysplastic changes in rat treated with DMBA and DAS. CV, invasive adenocarcinoma in rat treated with DMBA and DAS. CW, normal epithelium from rat treated with DMBA and DAS. CX, dysplastic changes in rat treated with DMBA and DAS. CY, invasive adenocarcinoma in rat treated with DMBA and DAS. CZ, normal epithelium from rat treated with DMBA and DAS. DA, dysplastic changes in rat treated with DMBA and DAS. DB, invasive adenocarcinoma in rat treated with DMBA and DAS. DC, normal epithelium from rat treated with DMBA and DAS. DD, dysplastic changes in rat treated with DMBA and DAS. DE, invasive adenocarcinoma in rat treated with DMBA and DAS. DF, normal epithelium from rat treated with DMBA and DAS. DG, dysplastic changes in rat treated with DMBA and DAS. DH, invasive adenocarcinoma in rat treated with DMBA and DAS. DI, normal epithelium from rat treated with DMBA and DAS. DJ, dysplastic changes in rat treated with DMBA and DAS. DK, invasive adenocarcinoma in rat treated with DMBA and DAS. DL, normal epithelium from rat treated with DMBA and DAS. DM, dysplastic changes in rat treated with DMBA and DAS. DN, invasive adenocarcinoma in rat treated with DMBA and DAS. DO, normal epithelium from rat treated with DMBA and DAS. DP, dysplastic changes in rat treated with DMBA and DAS. DQ, invasive adenocarcinoma in rat treated with DMBA and DAS. DR, normal epithelium from rat treated with DMBA and DAS. DS, dysplastic changes in rat treated with DMBA and DAS. DT, invasive adenocarcinoma in rat treated with DMBA and DAS. DU, normal epithelium from rat treated with DMBA and DAS. DV, dysplastic changes in rat treated with DMBA and DAS. DW, invasive adenocarcinoma in rat treated with DMBA and DAS. DX, normal epithelium from rat treated with DMBA and DAS. DY, dysplastic changes in rat treated with DMBA and DAS. DZ, invasive adenocarcinoma in rat treated with DMBA and DAS.
rations in the esophageal mucosa in the initial pilot study. Since nuclear aberrations reflect exposure of proliferating cells to genotoxic injury (12), they are an acute biological phenomenon. Other factors may affect the process of esophageal tumorigenesis long after the initiation phase of carcinogenesis and were unknown variables affecting this experiment. Factors not investigated that could account for our results include stimulation of pathways of carcinogen detoxification, such as induction of the glutathione-mediated conjugations. Sparnins et al. (17) have recently shown that allyl methyltrisulfide, another organic sulfide in garlic, maximally stimulated glutathione-S-transferase activity in the A/J mice in which they reported 70% inhibition of benzo(a)pyrene forestomach carcinogenesis (17). In another study these investigators found DAS as well to be an effective inhibitor of lung cancer in mice (18). Although chronic stimulation of the biochemical enzymes involving detoxification of NMBA remains an untested possibility in this study, our data suggest that changes in the initial metabolic conversion of NMBA could play some part in the chemopreventive action of DAS. That hepatic metabolism of NMBA was affected by DAS but not esophageal metabolism could reflect the rapid turnover of NMBA in the liver compared to the esophagus as reported by Labuc and Archer (13) and Kawinishi et al. (20) and the possibility that diallyl thioethers are rapidly transported to the liver where they could affect metabolism.

The results of this study confirm our previous finding that DAS is a potent chemopreventive agent of monoaalkylating gastrointestinal carcinogens, namely, NMBA and, as we found previously, DMH. Whether DAS is equally potent in protecting against gastrointestinal carcinogens, namely, NMBA and, as we found previously, DMH and is usually associated with poor prognosis due to inadequate therapeutic regimens (22). The etiology of the disease in parts of China is suggestive of a relationship between inadequate dietary micronutrients and contamination of certain foods with NMBA (23).

In summary, DAS, a natural organosulfur product from garlic, could inhibit the carcinogenic effects of NMBA experimentally in animals. Once more is known about the way in which DAS acts to prevent cancer, formulations containing the sulfide could be made available for pharmacological investigations in humans.

ACKNOWLEDGMENTS

We wish to thank Debbie Alnutt and Robyn Rae for their technical assistance and Carey Smith for veterinary care. Dr. Clifton Stephens of the Division of Veterinary Medicine and Surgery conducted the pathological analysis. We also thank Betty Harwerth for preparation of the manuscript and Leslie Wildrick for editorial assistance.

REFERENCES

Chemoprevention of \(N \)-Nitrosomethylbenzylamine-induced Esophageal Cancer in Rats by the Naturally Occurring Thioether, Diallyl Sulfide

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/48/23/6872

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.