ABSTRACT

Caloric restriction (CR) inhibits many neoplastic diseases in rodents, yet the biochemical mechanism(s) for these effects are poorly understood. We have examined the effects of ad libitum (AL) feeding with 25 or 40% CR on the promotion of 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis in virgin female Sprague-Dawley rats. Further, we have also studied the influence of chronic CR on temporal alterations in circulating insulin, insulin-like growth factor I/somatomedin C, insulin-like growth factor II/multiplication-stimulating activity, and epidermal growth factor levels at 0, 1, 3, 5, 11, and 20 weeks in carcinogen- and vehicle-treated animals. Tumor incidence and multiplicity were markedly inhibited (P < 0.05) with increasing CR. Fasting serum insulin-like growth factor I/somatomedin C levels exhibited a significant acute decline with CR at 1 and 3 weeks, but were comparable to AL-fed controls throughout the remainder of the 5-month study, despite continued differences in weight gain between AL and CR rats. Levels of insulin-like growth factor II/multiplication-stimulating activity exhibited no discernible pattern in relation to CR. Serum insulin levels showed age-dependent increases, but were affected by increasing CR at all time points. Insulin levels were significantly (P < 0.05) reduced in 40% CR rats from 3 weeks onward compared to controls, while 25% CR resulted in nonsignificant (P < 0.07) reductions throughout the study. No significant differences in growth factor levels were observed between 7,12-dimethylbenz(a)anthracene- and vehicle-treated rats. Circulating epidermal growth factor was not detectable in any treatment group regardless of the nature or duration of the dietary regimen, time of blood collection, or subsequent tumor-bearing status.

These data suggest that decreased serum insulin-like growth factor I/somatomedin C and insulin levels with CR and their complex interactions in vivo may play a role in the inhibition of mammary tumor promotion by CR.

INTRODUCTION

CR inhibits the development of a broad spectrum of neoplastic diseases in rodents (1, 2), including DMBA-induced (3) mammary carcinomas. Moreover, a strong relationship between caloric intake, body weight, and tumorigenesis at a number of plastic diseases in rodents (1,2), including DMBA-induced (3) mammary tumorigenesis in virgin female Sprague-Dawley rats. Further, we have also studied the influence of chronic CR on temporal alterations in circulating insulin, insulin-like growth factor I/somatomedin C, insulin-like growth factor II/multiplication-stimulating activity, and epidermal growth factor levels at 0, 1, 3, 5, 11, and 20 weeks in carcinogen- and vehicle-treated animals. Tumor incidence and multiplicity were markedly inhibited (P < 0.05) with increasing CR. Fasting serum insulin-like growth factor I/somatomedin C levels exhibited a significant acute decline with CR at 1 and 3 weeks, but were comparable to AL-fed controls throughout the remainder of the 5-month study, despite continued differences in weight gain between AL and CR rats. Levels of insulin-like growth factor II/multiplication-stimulating activity exhibited no discernible pattern in relation to CR. Serum insulin levels showed age-dependent increases, but were affected by increasing CR at all time points. Insulin levels were significantly (P < 0.05) reduced in 40% CR rats from 3 weeks onward compared to controls, while 25% CR resulted in nonsignificant (P < 0.07) reductions throughout the study. No significant differences in growth factor levels were observed between 7,12-dimethylbenz(a)anthracene- and vehicle-treated rats. Circulating epidermal growth factor was not detectable in any treatment group regardless of the nature or duration of the dietary regimen, time of blood collection, or subsequent tumor-bearing status.

These data suggest that decreased serum insulin-like growth factor I/somatomedin C and insulin levels with CR and their complex interactions in vivo may play a role in the inhibition of mammary tumor promotion by CR.
immunoassay has been previously described (38). Bovine liver membrane fractions for use in IGF-II radioreceptor assays were prepared as detailed by Cuatrecasas (40). Porcine insulin (receptor grade) was obtained from Sigma (St. Louis, MO). ¹²⁵I-Insulin (porcine, receptor grade) was obtained from New England Nuclear (Boston, MA) at a specific activity of 2200 Ci/mmol. Murine EGF (receptor grade) and rabbit anti-EGF antiserum for radioimmunoassay were purchased from Collaborative Research, Inc. (Irvinton, MA). ¹²⁵I-EGF (murine, receptor grade) was obtained from New England Nuclear at a specific activity of ~170 μCi/μg. Goat anti-rabbit IgG was from ICM Immunobiologics (Lisle, IL) and human γ-globulin (Cohn fractions II and III) was obtained from Sigma.

Experimental Design and Dietary Regimens. Virgin female Sprague-Dawley rats (Charles River, Wilmington, MA) were received at 43 days of age and housed one/cage at 21°C on a 12-h light-dark cycle. The experimental protocol was approved by the Wistar Institute's Institutional Animal Care and Use Committee. Animals were fed a standard commercial laboratory rat ration, and at 50 days of age each rat received by gavage either 5 mg of DMBA (Eastman Kodak, Rochester, NY) dissolved in corn oil or a vehicle treatment (corn oil). Animals were fed the standard diet for one additional week, at which time they were randomly assigned to the specially formulated semipurified diets (Dyets Inc., Bethlehem, PA) listed in Table 1. Carcinogen- and vehicle-treated animals were fed either ad libitum (AL) or pair fed 25% (25% CR) and 40% (40% CR) fewer calories than that of controls fed AL. There were six rats in each vehicle-treated dietary group, 20 in AL, 10 in 40% CR, and 15 in the 25% CR group. The diets were designed such that the absolute intake of all micro- and macronutrients, except for carbohydrate, was similar for each group, creating a controlled CR state which allowed continued growth but at a reduced rate (3, 41). Animals were maintained on these dietary regimens during the postinitiation phase of the study and six to 10 animals per treatment group were bled by gavage either 5 mg of DMBA (Eastman Kodak, Rochester, NY) dissolved in corn oil or a vehicle treatment (corn oil). Animals were fed the standard diet for one additional week, at which time they were randomly assigned to the specially formulated semipurified diets (Dyets Inc., Bethlehem, PA) listed in Table 1. Carcinogen- and vehicle-treated animals were fed either ad libitum (AL) or pair fed 25% (25% CR) and 40% (40% CR) fewer calories than that of controls fed AL. There were six rats in each vehicle-treated dietary group, 20 in AL, 10 in 40% CR, and 15 in the 25% CR group. The diets were designed such that the absolute intake of all micro- and macronutrients, except for carbohydrate, was similar for each group, creating a controlled CR state which allowed continued growth but at a reduced rate (3, 41). Animals were maintained on these dietary regimens during the postinitiation phase of the study and six to 10 animals per treatment group were bled by cardiac puncture under methoxyflurane anesthesia after an overnight fast between 8:00 a.m. and 10:00 a.m. at 1, 3, 5, 11, and 20 weeks from the time of instituting the dietary treatments. The study was terminated at 20 weeks from the start of feeding the experimental diets at which time rats were killed by exsanguination under methoxyflurane anesthesia. As noted previously (41), it is not feasible to bleed or sacrifice all groups in a CR study following food consumption; hence food was removed from all designated animals at the same time. Tumor incidence and multiplicity were recorded and tumor size/weight were classified as previously described (41). Sera were stored at -70°C until analysis.

Table 1 Semipurified diet composition (g/100 g)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Ad libitum</th>
<th>25% restricted*</th>
<th>40% restricted*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose</td>
<td>48.0</td>
<td>30.7</td>
<td>34.7</td>
</tr>
<tr>
<td>Casein</td>
<td>21.6</td>
<td>28.8</td>
<td>26.5</td>
</tr>
<tr>
<td>ω-Methionine</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Corn oil</td>
<td>15.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Cellulose</td>
<td>10.1</td>
<td>13.5</td>
<td>10.1</td>
</tr>
<tr>
<td>AIN-76A vitamins</td>
<td>1.0</td>
<td>1.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Bernhart-Tomarelli minerals</td>
<td>3.8</td>
<td>5.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Choline chloride</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

* The 25%-restricted diet provides identical nutrient intake as that of ad libitum, except for carbohydrate. The 25%- and 40%-restricted diets were pair fed at 75% and 60% that of the ad libitum-fed rats, respectively.

Results

Effects of CR on Host Body Weight and Tumor Incidence and Multiplicity. The mean body weights of rats fed AL and 25% or 40% calorically restricted regimens throughout the 5-month study are depicted in Fig. 1. The rate of body weight gain of rats subject to increasing CR was reduced, with the terminal body weights of 25% CR and 40% CR animals representing 20–22% and 32–37% reductions, respectively, from the AL-fed group. No significant difference was observed between terminal

* Insulin Radioimmunoassay Core Facility (DK 19525). Diabetes Research Center, University of Pennsylvania, Philadelphia, PA 19104.
* T. Oka, personal communication.

Downloaded from cancers.aacrjournals.org on June 9, 2017. © 1989 American Association for Cancer Research.
CALORIC RESTRICTION AND CIRCULATING GROWTH FACTORS

Fig. 1. Body weight of female Sprague-Dawley rat given DMBA (□, △, ○) or vehicle treatment (Φ, ▲, ◆) and fed ad libitum (□) or 25% (△) or 40% (○) calorie-restricted diets. Animals were 57 days of age at 0 weeks.

Table 2 DMBA-induced mammary tumors in ad libitum-fed and calorically restricted female Sprague-Dawley rats

<table>
<thead>
<tr>
<th>Dietary regimen</th>
<th>Tumor incidence</th>
<th>% of LP tumors*</th>
<th>% of SNP tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad libitum</td>
<td>18/20 90%</td>
<td>5.6 ± 1.7</td>
<td>87</td>
</tr>
<tr>
<td>25% Restriction</td>
<td>49/80 61%</td>
<td>3.4 ± 0.6</td>
<td>77</td>
</tr>
<tr>
<td>40% Restriction</td>
<td>2/10 20%</td>
<td>1.5 ± 0.5</td>
<td>33</td>
</tr>
</tbody>
</table>
| *LP, large, palpable tumors; SNP, small, nonpalpable tumors ≤100 mg.

Table 2 summarizes the data on mammary tumor incidence and multiplicity in animals exposed to carcinogen. Tumor incidence and multiplicity were reduced significantly with increasing CR as demonstrated previously (1, 3, 41). Moreover, we have consistently observed in this and other tumorigenesis studies (3, 41) that with increasing CR the incidence of larger, palpable tumors is reduced, and an increasing proportion of the tumors developing in CR animals are extremely small, ≤100 mg in mass, and are not palpable through the skin, even at necropsy. Presumably these tumors are growth inhibited. We have examined the properties of these tumors with regard to growth factor binding in the subsequent report (37) and previously (41) with regard to tumor carbohydrate metabolism.

Circulating Growth Factor Levels in AL-fed and CR Rats. Shown in Fig. 2a are mean serum IGF-I/Sm-C levels in carcinogen and vehicle-treated AL, 25% CR and 40% CR rats throughout the 5-month study period. Fasting serum IGF-I/Sm-C levels showed a significant acute decline with increasing CR at 1 and 3 weeks; by 5 weeks on CR regimens and throughout the remainder of the 5-month study, IGF-I/Sm-C levels were comparable to those of control animals fed AL. Therefore, over a longer term, there appears to be either an adaptation of fasting IGF-I/Sm-C levels to chronic CR or attainment of constitutive levels, despite the observed differences in body weight gain between AL-fed and CR groups of rats (Fig. 1). No significant differences were found between vehicle- and carcinogen-treated animals within each group.

In contrast to IGF-I/Sm-C, levels of IGF-II/MSA (Fig. 2b) demonstrated wide variation and showed no significant pattern as a function of CR. To our knowledge, this is the first specific examination of IGF-II/MSA levels (rather than total IGFs and IGF-I/Sm-C levels) as a function of CR, and suggests little, if any, observable nutritional modulation of circulating IGF-II/MSA levels. No significant differences in IGF-II/MSA levels were observed between DMBA- and vehicle-treated rats.

There are significant effects of CR and the duration of feeding on fasting serum insulin levels (Fig. 2c). Serum insulin levels exhibited an age-dependent progressive increase, the magnitude of which was reduced, however, with increasing CR at all time points examined in both vehicle- and carcinogen-treated rats. Serum insulin levels were significantly reduced by 40% CR from 3 weeks onward compared to controls, while 25% CR resulted in reductions throughout the study, albeit nonsignifi-
carcinogenesis studies given the observed effects of IGF-I/Sm-C on mammary tumorigenesis per se.

The data obtained for insulin and IGF-I/Sm-C are suggestive that IGF-I/Sm-C plays a role in the early phases of tumor promotion inhibited by CR, that interactions with insulin are likely, and that insulin may act independently during latter stages of tumor development inhibited by CR. Paradoxically, there were no consistent patterns between tumor-bearing (or subsequent tumor bearing) status and the serum levels of any of the growth factors examined within each dietary group (data not shown).

There is evidence for complex interactions between insulin and IGF-I/Sm-C homeostasis. Some reports (28, 29) suggest a permissive role of insulin in IGF-I/Sm-C growth regulation in vivo. Also, nanomolar levels of insulin promote IGF-I/Sm-C secretion in isolated hepatocytes, liver tissue explants, and perfused livers (17). In addition to these direct insulin-IGF-I/Sm-C interactions, insulin has been shown to play a role in the regulation of at least one low molecular weight IGF binding protein in vivo (51).

Prolactin levels are reduced by caloric or dietary restriction (10, 11) and prolactin has acute somatogenic effects in vivo, causing marked elevations in hepatic IGF-I/Sm-C mRNAs and serum IGF-I/Sm-C levels but less pronounced effects chronically (52). Thus, alterations in prolactin levels with CR may be of importance in mammary tumorigenesis both for their acute somatogenic activity and their mammotrophic effects as well, although the latter would not be a likely influence on other tissues affected by CR.

The interactions of EGF and a variety of mammogenic hormones on the growth and differentiation of mammary tissue have been well documented (31, 32). The inability to measure circulating EGF levels in our experimental system is probably caused by the reported concentration of blood EGF in adult male rats (53) being below the limit of detection for the assay used. In view of the androgen dependence of EGF synthesis and secretion, plasma EGF levels are several-fold higher in male than in female mice (54, 55). In female mice, EGF levels increase markedly during pregnancy, lactation, and shortly thereafter, but are 5- to 13-fold lower in virgin mice (45).

In conclusion, we have observed marked reductions in mammary tumor incidence and multiplicity with increasing chronic CR. Moreover, circulating levels of the peptide growth factors examined were differentially affected by chronic CR, with acute reductions in IGF-I/Sm-C, both acute and long term reductions in serum insulin levels, and no discernible pattern of alterations in circulating IGF-II/MSA levels. Epidermal growth factor could not be detected in the serum of animals regardless of age, dietary state, or bleeding time. Alterations in circulating IGF-I/Sm-C and insulin, and their complex interactions in vivo, may contribute to the inhibition of tumor growth by CR. Specifically, such alterations in conjunction with previously observed influences of CR on circulating prolactin and estrogen levels or estrous cycles (10, 11) may explain the inhibitory effects of CR on mammary tumorigenesis per se.

ACKNOWLEDGMENTS

The authors wish to thank Joseph DiCarlo, Carol Wisehart, and Matthew Davis for their skilled assistance.
REFERENCES


Caloric Restriction and 7,12-Dimethylbenz(a)anthracene-induced Mammary Tumor Growth in Rats: Alterations in Circulating Insulin, Insulin-like Growth Factors I and II, and Epidermal Growth Factor

Bruce A. Ruggeri, David M. Klurfeld, David Kritchevsky, et al.


Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/49/15/4130