High-Dose Cyclophosphamide or Melphalan with Escalating Doses of Mitoxantrone and Autologous Bone Marrow Transplantation for Refractory Solid Tumors

Divisions of Intensive Care [P. O. M. M.] and Medical Oncology [D. T. S., P. H. B. W., E. G. E. d. V., N. H. M.], Department of Internal Medicine, and Department of Pharmacy [D. R. A. U.], University Hospital, 9713 EZ Groningen, The Netherlands

ABSTRACT

As the dose-limiting toxicity of mitoxantrone is hematological, the drug is suitable for dose escalation and use in intensive chemotherapy followed by autologous bone marrow rescue. Adult patients with therapy-resistant solid tumors received a regimen of high-dose cyclophosphamide (7 g/m²) and escalating doses of mitoxantrone in dose steps of 30, 45, 60, and 75 mg/m². Both drugs were given i.v. on 3 consecutive days. Despite the addition of mesnex (3.5 to 7 g/m²), hemorrhagic cystitis occurred on the second day in four of eight patients, irrespective of the mesnex or mitoxantrone dose. Therefore, the cyclophosphamide in the combination regimen was replaced by high-dose melphalan (180 mg/m²). Mucositis was dose limiting at 75 mg/m² of mitoxantrone.

Responses were seen in eight of ten evaluable patients with four complete responses. Three responders received, after the autologous bone marrow transplantation program, radiotherapy or surgery on pretreatment bulky tumor localizations. Five patients still have disease-free survival after 9 to 36 mo.

Pharmacokinetic studies of mitoxantrone were performed by high-performance liquid chromatography with UV detection. The plasma disappearance of mitoxantrone fitted into a three-compartment model with a mean t₁/₂ of 10 min, a mean t₂/₃ of 96 min, and a slow elimination phase of 172 h. The mean distribution volume was 4294 ± 3836 liters.

We conclude that the high-dose cyclophosphamide-mitoxantrone regimen led to unexpected bladder toxicity, but the combination of melphalan (180 mg/m²) and mitoxantrone (60 mg/m²) can probably be given without major extramedullary toxicity. However, more patients should be evaluated at this dose before definite conclusions can be drawn about toxicity.

INTRODUCTION

Extensive experimental and clinical evidence (1, 2) supports the notion that higher doses of cytostatics can kill a larger fraction of the tumor. Among the active cytostatic agents suitable for delivery in high dosages are a number of alkylating agents, notably cyclophosphamide and melphalan (3, 4). One of the most widely active cytostatic drugs when applied in normal dosages is doxorubicin, but dose escalation is limited because of mucositis and cardiotoxicity. Mitoxantrone, an anthracenedione derivative, is an alternative for doxorubicin with less nonhematological side effects (5, 6) and cross-resistance between these drugs is not absolute (7). Mitoxantrone has shown activity in vitro and in vivo in leukemia, lymphoma, and advanced breast cancer (8–13). In vitro experiments have indicated a dose-response relationship for this drug. In Phase I trials, myelosuppression was the dose-limiting toxicity of mitoxantrone (14). No extramedullary toxicity was seen in adult patients with leukemia treated with doses up to 24 mg/m² (15). Provided the bone marrow function is safeguarded by bone marrow transplantation, mitoxantrone seems an excellent candidate for dose escalation.

In the current clinical trial adult patients with disseminated solid tumors received a regimen of escalating doses of mitoxantrone in combination with high-dose cyclophosphamide on three consecutive days followed by ABMT.²

The objectives of our study were: determination of the maximum tolerated dose of mitoxantrone that can be given in combination with a fixed high-dose of cyclophosphamide; determination of the extramedullary toxicity; assessment of the antitumor activity of the regimen; and determination of the pharmacokinetic characteristics of mitoxantrone following high-dose i.v. administration.

Because of unexpected extramedullary toxicity of the combination, cyclophosphamide was replaced by high-dose melphalan. The same objectives were studied for the regimen of mitoxantrone plus melphalan.

MATERIALS AND METHODS

Patients between 16 and 60 yr of age were eligible when they had histologically confirmed malignant tumors for which established curative or palliative treatment modalities were nonexistent. Other entry criteria were: no history of congestive heart failure or persistent arrhythmia; serum bilirubin levels < 30 µmol/liter and serum creatinine levels < 120 µmol/liter; a Zubrod performance status of 0–1, and a life expectancy of at least 4 wk. Patients with tumor infiltration of the bone marrow, chemotherapy or radiotherapy within the past 3 wk, or treatment with mitomycin or nitrosoureas within the past 6 wk were excluded. Informed consent was obtained from all patients, and the study was approved by the institutional medical ethical committee.

Chemotherapy

Mitoxantrone was dissolved in 100 ml of 0.9% NaCl solution and administered over 30 min on Days 1, 2, and 3. The first dose step consisted of a 30-mg/m² total dose. Dose escalations were 15 mg/m² and were to proceed in the absence of unacceptable (Grade 3 or higher) extramedullary toxicity at that level. Two h before the start of each mitoxantrone infusion, cyclophosphamide was given in a total dose of 7 g/m² divided over 3 days. Immediately prior to, 4, and 8 h after the cyclophosphamide infusion, mesnex was administered i.v. in a total dose equal to 50 or 100% of the cyclophosphamide dose. The administered i.v. volume on the days of chemotherapy was 4 liters/day.

Because of unexpected extramedullary toxicity, cyclophosphamide was replaced by melphalan (180-mg/m² total dose), divided and given on Days 1, 2, and 3 two h before each mitoxantrone infusion. Melphalan was given in 250 ml of 2.5% glucose-0.45% NaCl solution in 1 h.

Supportive Care

Patients were treated in a single-person bedroom. All patients received p.o. prophylactic antibiotic treatment for selective decontamination of the gut to prevent gram-negative or mycotic infection (16). Empiric or specific parenteral antibiotics were given for suspected or documented infection, after appropriate culturing. Platelets were transfused when bleeding was present or prophylactically if the platelet count...
was below 15 × 10⁹/liter. A number of patients received cryopreserved autologous platelets; otherwise allogeneic single-donor platelets were used. Patients were fed by parenteral nutrition alone or in combination with enteral tube feeding.

Bone Marrow Collection Cryopreservation, and Reinfusion

The technique of bone marrow collection without general anesthesia and of cryopreservation has been reported previously (17). On Day 7 bone marrow with a minimum of 1 × 10⁸ nucleated cells/kg of body weight was reinfused after rapid thawing without washing through a Hickman catheter.

Toxicity

Toxicity was assessed daily according to the WHO criteria (18). Pretreatment investigations included chest X-ray, full blood count, biochemistry profile including renal and hepatic function tests, ECG, and a baseline radionucleide ejection fraction or echocardiography. Other investigations were performed if appropriate. Cardiac status was reassessed using repeat ECG and follow-up ejection fraction or echocardiography after 4 wk, or when indicated on clinical grounds. During treatment in the ABMT program, physical examination and full blood cell counts were done daily and liver and renal functions 3 times a wk. Microscopic investigation of the urine sediment was done daily from Day 1 to Day 7 and thereafter 3 times a wk. During mitoxantrone infusions the cardiac rhythm was monitored.

Response

A CR was defined as complete disappearance of all signs and symptoms of detectable tumor. A PR was defined as a decrease of at least 50% of the sum of the products of the largest perpendicular diameters of measurable lesions. If a decrease in the level of established tumor marker (e.g., α-fetoprotein or β-human chorionic gonadotropin) of >90% was seen in patients without measurable or evaluable lesions, this was also considered a PR. Stable disease was defined as a decrease or increase of measurable lesion < 25%. Disease progression was defined as the growth of measurable lesions. Response duration was measured from the first day of treatment in the ABMT program until progression of the tumor or rise of the markers. Survival time was also measured from Day 1 until death.

Pharmacological Study

Sampling. Blood samples for analysis of mitoxantrone concentrations were obtained in heparinized polypropylene tubes before drug treatment, at the end of the 30-min mitoxantrone infusion, and at 5, 10, 15, 30, and 60 min and 2, 4, 8, and 24 h after the end of the infusion. Nadir levels were obtained immediately before each subsequent dose. After the third day of treatment, daily blood sampling was performed at least until Day 8. Samples were immediately centrifuged, and the plasma was separated and frozen in polypropylene tubes containing 0.2 mol of 0.5% ascorbic acid in citrate buffer (0.1 M, pH 3). Where feasible, urine was collected in plastic vials containing ascorbic acid in 12-h intervals on Days 1 to 3 and in 24-h intervals on Days 4 to 10. Plasma and urine aliquots were protected from daylight and stored at −20°C until analysis. Analysis. The mitoxantrone concentrations in plasma and urine were measured by HPLC and UV detection according to Peng et al. (19), with slight modifications (20). The detection limit of mitoxantrone in plasma and urine was 0.5 μg/liter.

Pharmacokinetics. The plasma concentration time data for each patient were subjected to pharmacokinetic analysis using a computer analysis program (21). The program includes a correction for infusion time (22), a statistical analysis comparing the accuracy of models containing different numbers of phases (23). Equations for distribution constants, elimination constants, total-body clearance, and apparent central and peripheral distribution volumes have been described (24).

RESULTS

From September 1985 to May 1988, 11 patients were included in this study. Patient characteristics are given in Table 1.
MITOXANTRONE IN AUTOLOGOUS BONE MARROW TRANSPLANTATION

Table 1 Patient characteristics and results

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (yr)</th>
<th>Sex</th>
<th>Tumor type</th>
<th>Previous chemotherapy</th>
<th>C (g/m²)</th>
<th>Mx (mg/m²)</th>
<th>Me (mg/m³)</th>
<th>Mesnum (g/m²)</th>
<th>Response to ABMT program</th>
<th>Response duration (mo)</th>
<th>Survival (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>F</td>
<td>Ovary</td>
<td>6 CAP, 5 AZP</td>
<td>7</td>
<td>30</td>
<td>3.5</td>
<td>PD</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>F</td>
<td>Ovary</td>
<td>PVB, 3 AZP</td>
<td>7</td>
<td>30</td>
<td>3.5</td>
<td>PR—surg—NED</td>
<td>13</td>
<td>36+ NED</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>F</td>
<td>Ovary</td>
<td>4 CAF</td>
<td>7</td>
<td>30</td>
<td>3.5</td>
<td>PR</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>F</td>
<td>Stomach</td>
<td>4 PVB, 2 FAm</td>
<td>7</td>
<td>45</td>
<td>3.5</td>
<td>PR</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>F</td>
<td>Breast</td>
<td>5 MTX + F + Vi + A</td>
<td>7</td>
<td>45</td>
<td>3.5</td>
<td>CR</td>
<td>8</td>
<td>25+ NED</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>M</td>
<td>Lung</td>
<td>No</td>
<td>7</td>
<td>45</td>
<td>7</td>
<td>PD</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>M</td>
<td>Germ cell</td>
<td>PVB, Act, P, IF, V</td>
<td>7</td>
<td>60</td>
<td>7</td>
<td>PR</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>52</td>
<td>F</td>
<td>Ovary</td>
<td>6 CAP</td>
<td>7</td>
<td>60</td>
<td>7</td>
<td>PR</td>
<td>9</td>
<td>14+ NED</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>F</td>
<td>Breast</td>
<td>6 MTX + F + Vi + A</td>
<td>75</td>
<td>180</td>
<td>CR</td>
<td>11+</td>
<td>11+ NED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>36</td>
<td>F</td>
<td>Ovary</td>
<td>9 C + CBDCA</td>
<td>60</td>
<td>180</td>
<td>CR</td>
<td>9+</td>
<td>9+ NED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td>F</td>
<td>Ovary</td>
<td>6 C + CBDCA + P</td>
<td>60</td>
<td>180</td>
<td>NE</td>
<td>NE</td>
<td>5+ NED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* C, cyclophosphamide; Mx, mitoxantrone; Me, melphalan; A, doxorubicin; P, cis-platinum; AZP, Ref. 25; PD, progressive disease; V, vinblastine; B, bleomycin; PR, partial remission; surg, surgery; NED, no evidence of disease; F, 5-fluorouracil; M, mitomycin; MTX, methotrexate; Vi, vincristine; CR, complete remission; Act, actinomycin D; IF, ifosfamide; CBDCA, carboplatin; NE, nonevaluable.

Table 2 Toxicity

<table>
<thead>
<tr>
<th>Patient</th>
<th>Mucositis (grade)</th>
<th>No. of platelet transfusions</th>
<th>Leukocytes ≤1.10⁹/liter (days)</th>
<th>Thrombocytes ≤40.10⁹/liter (days)</th>
<th>Hemorrhagic cystitis (grade)</th>
<th>Liver function disturbances (grade)</th>
<th>Diarrhea (grade)</th>
<th>Vomiting (grade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>22</td>
<td>21</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>0–1</td>
<td>12</td>
<td>28</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0–1</td>
<td>15</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>1–2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0–1</td>
<td>25</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0–1</td>
<td>5</td>
<td>18</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1–2</td>
<td>14</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>0–1</td>
<td>22</td>
<td>24</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1–2</td>
<td>18</td>
<td>13</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>26</td>
<td>33</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0–1</td>
<td>12</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0–1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>11</td>
<td>47</td>
<td>114</td>
<td>0</td>
<td>1</td>
<td>0–1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3 Infection

<table>
<thead>
<tr>
<th>Patient</th>
<th>Fever >38°C (days)</th>
<th>Site of infection</th>
<th>Causative microorganism</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>Bacteremia</td>
<td>Streptococcus viridans group</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>Bacteremia</td>
<td>Staphylococcus epidermidis</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>Skin at insertion of HC*</td>
<td>S. epidermidis</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>Bacteremia</td>
<td>S. epidermidis</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>Lung/bacteremia</td>
<td>Not found/S. epidermidis</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>Lung/bacteremia</td>
<td>Not found/S. epidermidis</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>Skin at insertion of HC</td>
<td>S. epidermidis</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>Bacteremia</td>
<td>S. epidermidis</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>Bacteremia</td>
<td>S. epidermidis</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>Bacteremia</td>
<td>S. epidermidis</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>Bacteremia</td>
<td>S. epidermidis</td>
</tr>
</tbody>
</table>

* HC, Hickman catheter.

Thirteen mo later a small pelvic relapse was also extirpated. She has no evidence of disease now 36 mo after treatment.

Patient 3 had advanced ovarian cancer with massive ascites, pleural effusion, and liver metastases. Laparoscopy after treatment showed a PR. After 3 mo the ascites returned.

Patient 4 had been treated because of metastatic adenocarcinoma of unknown origin, and later gastric cancer was detected. After high-dose chemotherapy, relaparotomy showed a PR of the gastric tumor, but persistent intraperitoneal metastases prevented further surgery.

Patient 5 had disseminated inflammatory breast cancer with bone metastases. She had persistent disease after doxorubicin-containing polychemotherapy. After a CR of 8 mo following high-dose chemotherapy, a skin nodule on the abdominal wall evidenced a relapse. After local treatment (radiotherapy and surgery), she remains free of disease 25 mo after ABMT.

Patient 6 had disseminated adenocarcinoma of the lung with rapidly progressive disease despite high-dose chemotherapy.

Patient 7 had been irradiated for a large mediastinal germ cell tumor. The α-fetoprotein level decreased more than 90% after high-dose treatment.

Patients 8 and 10 achieved a pathologically confirmed CR of ovarian cancer. Nine mo after ABMT, Ca-125 levels increased in Patient 8.

Patient 9 had disseminated breast cancer and a single lung metastasis persisting after doxorubicin-containing chemotherapy. After high-dose treatment she had a CR. She received local irradiation on the involved lung field, and she is without evidence of disease 11 mo after ABMT.

Pharmacokinetic Characteristics of Mitoxantrone. Plasma mitoxantrone concentrations on Days 1, 2, and 3 of mitoxantrone infusion were measured in 6 patients. After the third day, levels were determined until Day 8 in four patients, and until Day 23 in one patient.

Pharmacokinetic results are summarized in Table 4. Plasma mitoxantrone concentrations measured by HPLC decayed in a triexponential fashion with a mean t₁/₂ of 0.17 ± 0.04 h (mean ± SD) and t₁/₂ of 1.6 ± 0.6 h. The mean terminal phase half-life was 172 h. The mean apparent volume of distribution was 4294 ± 3836 liters. The mean plasma clearance was 0.79 ± 0.3 liter/min. The cumulative recovery of mitoxantrone in the urine was 8.7% after 6 h. In case of hematuria, determination of mitoxantrone concentrations on Days 1, 2, and 3 of mitoxantrone infusion were measured in 6 patients. After the third day, levels could still be found on Day 7 (day of marrow reinfusion). Low plasma levels of mitoxantrone could still be found on Day 7 (day of marrow reinfusion). A complete pharmacokinetic study is shown in one representative patient (Fig. 1).
Another possibility might be that mitoxantrone induces the cytochrome P-450 system resulting in the generation of more 4-hydroxy-cyclophosphamide giving rise to bladder toxicity. As the hemorrhagic cystitis was not avoidable and occasionally even platelet transfusions were required to ameliorate the bleeding, the cyclophosphamide in the combination regimen was replaced by high-dose melphalan. Although the dose escalation with this alkylator is somewhat less than with cyclophosphamide, it has a broad spectrum of clinical activity when applied in ablative regimens (4, 31).

The dose limit of mitoxantrone appeared to be 75 mg/m2 due to mucositis Grade 4 of the oropharyngeal region.

No clinical evidence of congestive heart failure occurred in this trial, in agreement with data in the literature that, with cumulative doses of mitoxantrone below 100 mg/m2, little cardiotoxicity is seen in patients pretreated with anthracyclines (32, 33). In two patients treated with high-dose melphalan and mitoxantrone, the ejection fraction decreased by, respectively, 16 and 6%. The decrease of 16% turned out to be transient because, after 6 wk, a repeated examination showed a reduction of only 6%.

No severe hepatic dysfunction was noted, but five patients had temporary elevations of hepatic enzymes or bilirubin after treatment with mitoxantrone; this side effect is in accordance with findings by Paciucci et al. (34).

The main toxicity in this study was infection. Its chief cause was the prolonged period of severe granulocytopenia. Earlier infusion of bone marrow does not seem desirable in view of the slow elimination of mitoxantrone.

The pharmacokinetic data following mitoxantrone i.v. administered in 30 min on 3 consecutive days showed a three-compartment model, in accordance with previous reports (35). Also the half-time elimination parameters in this high-dose regimen were within the limits found in the literature (36-39). The small amount of mitoxantrone found in the urine confirms that renal elimination is not a significant pathway. The large mean distribution volume, together with the long terminal half-life, is consistent with the reports of detection of mitoxantrone in human autopsy tissues long after the last gift of the drug (40, 41). The slow terminal elimination, also found by Ehninger et al. (39), resulted in the drug being detectable in the plasma on the day of marrow reininfusion. However, this concentration of 1 mg/liter is well below the concentration found to kill human cells in in vitro experiments (42).

DISCUSSION

In this study the first eight patients were treated with incremental doses of mitoxantrone and a fixed high-dose of cyclophosphamide. Hemorrhagic cystitis Grade 3 occurred in four of these patients within 24 h after the start of treatment. This phenomenon was not related to the dose of mitoxantrone and was not prevented by intensification of mesnum dosing. Hemorrhagic cystitis as a toxic effect of mitoxantrone has not been reported, whereas it is a known side effect of therapy with oxazaphorine cytostatics such as cyclophosphamide (26). Renal elimination of acrolein, a metabolite of oxazaphorine, is held responsible (27). Uroprotective measures such as ample hydration, frequent voiding, and administration of the acrolein-binding agent mesnum are usually effective in preventing hemorrhagic cystitis. In our experience with 66 ABMT patients treated with a similar high-dose of cyclophosphamide plus etoposide and an uroprotective regimen containing mesnum in a dose of 50% of that of cyclophosphamide, we noted hemorrhagic cystitis in only two patients (17, 28-30).

A possible explanation for the increased incidence after the combination mitoxantrone/cyclophosphamide/mesnum could be competition of mitoxantrone and acrolein for the binding by thiol groups. However, in vitro equimolar mitoxantrone and mesnum solutions did not react at room temperature over a period of 24 h as evidenced by thin-layer chromatography.\(^3\)

\(^3\) P. Hilgard, Asta Werke, personal communication.

\[\begin{array}{cccccccc}
\text{Patient} & \text{Mx dose} & \text{Comedication} & \text{Day} & \text{Peak level} & \text{AUC} & \text{Plasma Mx concentration, Day 4} & \text{Plasma Mx concentration, Day 7} \\
& (mg/m}^2 & \text{Day of} & (ug/liter) & (ug/h/liter) & & & \\
\text{A} & 45 & C & 1 & 209 & 0.198 & 2.0 & 0.6 \\
\text{B} & 45 & C & 1 & 519 & 0.202 & 1.0 & 1.1 \\
& & 2 & 634 & & & & \\
& & 3 & 837 & & & & \\
\text{C} & 60 & C & 1 & 509 & 0.201 & 3.0 & <0.5 \\
& & 2 & 318 & & & & \\
& & 3 & 345 & & & & \\
\text{D} & 60 & Me & 1 & 385 & 0.088 & 2.37 & 59.2 \\
& & 2 & 337 & 0.161 & 0.82 & 200 & 648 \\
& & 3 & 259 & 0.105 & 1.23 & 35.8 & 371 \\
\text{E} & 60 & Me & 1 & 509 & 0.132 & 1.46 & 48.6 \\
& & 2 & 1,295 & & & & \\
& & 3 & 779 & & & & \\
\text{F} & 75 & Me & 1 & 617 & 0.194 & 2.01 & 28.3 \\
& & 2 & 485 & 0.181 & 2.32 & 720 & 3,690 \\
& & 3 & 1,052 & & & & \\
\end{array}\]

Mean ± SD (all patients) 557 ± 301 0.17 ± 0.4 1.6 ± 0.6 172 ± 223 1,102 ± 1,013 2.7 ± 0.4 1.2 ± 0.7 32.6 ± 8.9 4,295 ± 3,837

\(\text{MX dose* b Comedication} \)

\(\text{Peak level} \)

\(\text{AUC} \)

\(\text{Plasma Mx concentration, Day 4} \)

\(\text{Plasma Mx concentration, Day 7} \)

\(\text{Vc (liter)} \)

\(\text{Vw (liter)} \)

\(\text{log} \text{conc (ug/liter)} \)

\(\text{1000.0} \)

\(\text{100.0} \)

\(\text{10.0} \)

\(\text{1.0} \)

\(\text{0.1} \)

\(\text{0.01} \)

\(\text{0.001} \)

\(\text{0.0001} \)

\(\text{1000.0} \)

\(\text{100.0} \)

\(\text{10.0} \)

\(\text{1.0} \)

\(\text{0.1} \)

\(\text{0.01} \)

\(\text{0.001} \)

\(\text{0.0001} \)

\(\text{log} \text{conc (ug/liter)} \)

\(\text{1000.0} \)

\(\text{100.0} \)

\(\text{10.0} \)

\(\text{1.0} \)

\(\text{0.1} \)

\(\text{0.01} \)

\(\text{0.001} \)

\(\text{0.0001} \)

\(\text{1000.0} \)

\(\text{100.0} \)

\(\text{10.0} \)

\(\text{1.0} \)

\(\text{0.1} \)

\(\text{0.01} \)

\(\text{0.001} \)

\(\text{0.0001} \)

\(\text{log} \text{conc (ug/liter)} \)

\(\text{1000.0} \)

\(\text{100.0} \)

\(\text{10.0} \)

\(\text{1.0} \)

\(\text{0.1} \)

\(\text{0.01} \)

\(\text{0.001} \)

\(\text{0.0001} \)
ACKNOWLEDGMENTS

the authors would like to thank H. Bloemhof, A. Bosse, P. W. Vinks, and Y. W. A. van der Pol for drug level measurements.

REFERENCES

High-Dose Cyclophosphamide or Melphalan with Escalating Doses of Mitoxantrone and Autologous Bone Marrow Transplantation for Refractory Solid Tumors

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/49/16/4654

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.