Cell Proliferation Induced by Uracil-Calculi and Subsequent Development of Reversible Papillomatosis in the Rat Urinary Bladder

Tomoyuki Shirai, Shoji Fukushima, Yoshiaki Tagawa, Masanao Okumura, and Nobuyuki Ito
First Department of Pathology, Nagoya City University Medical School, I-Kawasumi, Mizuho-ku, Nagoya 467, Japan

Abstract

The sequence of cellular alterations in urinary bladder epithelium associated with uracil-induced reversible urothelial proliferation was investigated in male F344 rats. Initial changes were submucosal edema with occasional mucosal ulcération or ulceration which appeared on Day 2 of uracil administration. Simple hyperplasia of bladder epithelium was already evident at this time and calculus formation was noted as early as Day 4. Labelling indices in the bladder epithelium assessed by bromodeoxyuridine incorporation were about 32% on Day 2 and then gradually decreased to 6% at Week 8 and 4% at Week 25 of chronic treatment. Histologically, a direct progression from simple hyperplasias, through papillary hyperplasias to papillomatosis, accomplished by Week 5, was evident. Dysplastic lesions were also apparent by Week 25. Topographically, papillomatosis was composed of marked interconnecting mucosal ridges of relatively uniform width. No polyplike protrusions were present and the vascular pattern revealed by resin perfusion casting demonstrated that these mucosal ridges were supported by a uniform plexus of capillary vessels. After withdrawal of uracil from the diet the labeling index dropped dramatically to 0.002% after 1 week and urothelial papillomatosis and papillomatosis had disappeared by Weeks 2 and 3, respectively.

The findings suggest that papillomatosis associated with uracil-calculi is a hyperplastic rather than a neoplastic response and that induction of putative neoplastic lesions is directly related to prolonged vigorous cell proliferation.

Introduction

The urinary bladder epithelium of rodents has been shown to readily proliferate in response to mechanical irritation such as the presence of stones (1-5), freeze ulceration (6), chemicals (7), or even physiological saline (8). Lalich (9) reported a high incidence of urothelial proliferation in rats given uracil orally, and recently, we found that a dietary supplement of uracil at a concentration of 3% induced mucosal papillomatosis in the urinary bladder of rats (10). Although urothelial proliferation and papillomatosis were severe and extensive, they disappeared when the treatment with uracil was stopped. Histological and transmission electron microscopical examination revealed that the epithelial cells of papillomas had essentially normal differentiation with the exception of numerous short uniform microvilli, ropy or rounded microridges, and occasional pleomorphic microvilli on the surface (10).

It was also demonstrated that even a short period of uracil administration strongly promoted tumor development in the urinary bladder of rats pretreated with a nitroso bladder carcinogen (11). Because of the lack of mutagenicity (12) and the reversibility of induced lesions, urothelial proliferation in rats given uracil was considered to be due to continuous irritation by the calculi formed. Thus, uracil-induced proliferative lesion development in rat urinary bladder can serve as a good experimental tool for studying regulation of epithelial growth and cell differentiation.

The present experiment was performed to clarify the sequence of morphological and proliferative changes associated with administration and withdrawal of uracil. A combined histopathological, BrdUrd incorporation, and scanning electron microscope approach was adopted to allow comparison with earlier findings after administration of unequivocal urinary bladder carcinogens. An investigation of vascular support by resin casting was also included.

Materials and Methods

A total of 115 male F344 rats, 6 weeks old and weighing about 120 g at the beginning of experiments, were purchased from Charles River Japan Inc., Kanagawa, Japan. Animals were housed in plastic cages with hard wood chip bedding, in an air-conditioned room with a 12-h/12-h light/dark cycle, and given food (Oriental MF; Oriental Yeast Co., Tokyo, Japan) and water ad libitum. Uracil (Wako Pure Chemical Co., Osaka, Japan) was added to the basal diet at a final concentration of 3.0%. 102 rats were initially placed on diet containing uracil for up to 25 weeks. 37 of them were returned to a uracil-free diet after 8 weeks of treatment. 13 rats given only the basal diet served as nontreated controls. For histological evaluation, four to six rats continuously given uracil were sacrificed on Days 2, 4, and 7, and at Weeks 2, 3, 5, 8, 12, and 25 of continuous administration, and groups of four or five rats which received uracil for 8 weeks and were then returned to basal diet were sacrificed at 1, 2, 3, 6, and 17 weeks after the cessation of uracil administration as indicated in Tables 1 and 2. Nontreated control rats were killed 0, 8, 14, and 25 weeks after the beginning of the experiment. To assess levels of DNA synthesis in the urothelium, three rats per experimental group at each time point were given a single i.p. injection of bromodeoxyuridine at a dose of 120 mg/kg b.w., 40 min before sacrifice. BrdUrd (Sigma Chemical Co., St. Louis, MO) was dissolved in physiological saline at a concentration of 2.4% immediately before use. Injection of BrdUrd was always performed between 9 and 10 a.m. to avoid circadian variation. At sacrifice, the urinary bladder, ureter, and renal pelvis of rats were removed, inflated, and fixed in buffered formalin for 3 days. They were routinely processed for histological examination and paraffin sections cut at 3 μm were stained with hematoxylin & eosin. Incorporation of BrdUrd into the nuclei was visualized immunohistochemically using the avidin-biotin-peroxidase complex method (13) with a monoclonal antibody against BrdUrd as described previously (14). Labeling indices were obtained by counting the number of labeled cells among at least 1000 epithelial cells per urinary bladder and expressed as percentage values.

Fixation of tissues with a mixture of 1% glutaraldehyde and 4% formalin (pH 7.2) at 4°C for longer than 48 h was applied in 23 rats for subsequent scanning electron microscopical examination, with post-fixation in 1.0% osmic acid (one or two rats at each time point as described for the histological evaluation). Vascular casts of the urinary bladder were prepared as described previously (15) by perfusion with saline followed by injection of Mercox CL-2B (Dainippon Ink and Chemicals, Inc., Tokyo, Japan). This procedure was performed on two rats at each time point for the first 8 weeks of uracil administration. Vascular casts of the entire bladder were examined by scanning electron microscopy after tissue digestion.

Received 5/20/88; revised 9/13/88; accepted 10/14/88.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked 'advertisement' in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This research was supported in part by Grants-in-Aid for Cancer Research from the Ministry of Education, Science, and Culture and from the Ministry of Health and Welfare of Japan.

2 To whom requests for reprints should be addressed.

1 The abbreviations used are: BrdUrd, bromodeoxyuridine; PN hyperplasia, papillary or nodular hyperplasia.
RESULTS

Development of Urolithiasis and Cell Proliferation. Table 1 summarizes the results of histopathological examination of the urinary bladders, ureters, and kidneys according to the duration of the treatment with uracil. There was no urolithiasis on Day 2 of uracil administration. Some rats had hematuria from around Day 4. A few small calculi of <1 mm diameter, were evident in the urinary bladders of 10 rats killed on Day 4. After Day 4, all rats had calculi and the number of calculi and their size increased with increasing duration of treatment with uracil until after 3 weeks, the urinary bladders became enlarged and filled with numerous yellowish-white calculi varying from 1 to 3 mm in diameter. No further increase in size of calculi was evident thereafter. Thickening of the bladder wall with dilatation of the major blood vessels was also evident. Hydrourerter and hydronephrosis were first observed on Day 4 of uracil administration, becoming severe with increasing duration of the treatment. Sometimes variation between the right and left side kidneys and ureters was evident. Calculi were also found present in the ureter and kidney pelvis, and their appearance and incidence correlated with the development of calculi in the urinary bladder. However, they tended to be smaller than those found in this latter organ.

Histologically, on Day 2 of the treatment, inflammatory cell infiltration (neutrophils with a small number of lymphocytes) with edema was evident in the submucosal layer of all cases. Erosion or ulceration of the bladder epithelium was sporadically present. These lesions were not observed on Day 14 and thereafter. Mitotic figures were most frequent on Day 4 (Fig. 1a).

Proliferative lesions of the urothelium were classified as described previously (10, 16). In the early stage of uracil administration, the urinary bladder mucosa demonstrated simple hyperplasia (Fig. 1a) involving a diffuse increase in epithelial cell layers (five to six cells). This stage was followed by papillary hyperplasia (Fig. 1b) where short finger-like growths of the epithelium tissue supported by fine fibrovascular connective tissue protruded into the lumen. Papillary hyperplasia was occasionally accompanied by nodular hyperplasia (inverted growth of hyperplastic epithelium). After 3-week treatment with uracil, papillary projection of the urinary bladder epithelium became marked and generally distributed throughout the bladder wall of all animals treated, a condition referred to as papillomatosis (Fig. 1c). Thereafter, papillomatosis was present for as long as uracil was given. Single or multiple diverticuli lined with hyperplastic urothelium were observed in the urinary bladder of all rats given uracil for longer than 5 weeks. They all showed luminal formation and were normally located in the submucosa and muscle layer (Fig. 1d'), although some extended

<table>
<thead>
<tr>
<th>Duration of uracil treatment (days)</th>
<th>No. of rats examined</th>
<th>Calculi</th>
<th>Erosion or ulceration</th>
<th>Cell infiltration</th>
<th>Submucosal edema</th>
<th>PN hyperplasia*</th>
<th>Papillomatosis</th>
<th>Diver-ticula</th>
<th>Dysplasia</th>
<th>Ureter hyperplasia</th>
<th>Kidney hydro-nephrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>7 (1)</td>
<td>5</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>14 (2)</td>
<td>5</td>
<td>+++</td>
<td>−</td>
<td>±</td>
<td>++</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>31 (5)</td>
<td>5</td>
<td>+++</td>
<td>−</td>
<td>±</td>
<td>++</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>35 (6)</td>
<td>4</td>
<td>+++</td>
<td>−</td>
<td>±</td>
<td>++</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>56 (8)</td>
<td>5</td>
<td>+++</td>
<td>−</td>
<td>±</td>
<td>++</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>84 (12)</td>
<td>4</td>
<td>+++</td>
<td>−</td>
<td>±</td>
<td>++</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>175 (25)</td>
<td>5</td>
<td>+++</td>
<td>−</td>
<td>±</td>
<td>++</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+++</td>
<td>++</td>
</tr>
</tbody>
</table>

* PN hyperplasia, papillary or nodular hyperplasia.
† Dysplasia was found in three of five rats.
‡ −, no change; ±, trace; +, slight; ++, moderate; +++ , marked.
into the subserosa. Diverticuli became large and cystic with prolonged administration of uracil and calculi were occasionally present. Of the five rats which received uracil for 25 weeks, three were found to have localized dysplastic lesions with distinct cellular atypia within the areas of papillomatosis (Fig. 2). Variability in cell and nuclear size and loss of nuclear polarity compared to the surrounding epithelium were pronounced.

The ureter epithelium also became hyperplastic and demonstrated development of uniform papillary structures. Papillary hyperplasia of the renal pelvic epithelium was first observed in rats given uracil for 25 weeks.

Disappearance of the Lesions. Withdrawal of uracil after 8 weeks treatment was associated with gradual regression of almost all the lesions induced (Table 2). The first dramatic change was disappearance of the calculi. Only a few tiny calculi could be seen in all five rats 7 days after the cessation of treatment and none were found after another 7 days. Epithelial cells within areas of papillomatosis demonstrated shrinkage and many basophilic bodies and vacuoles suggesting pyknotic cells or cell debris were observed in the mucosa (Fig. 3a). Papillary projection of the epithelium appeared to collapse (Fig. 3b). Within 3 weeks, almost all papillary growths of the epithelium had disappeared and the mucosa was composed of simple hyperplastic epithelium (simple hyperplasia) with a few areas of papillary or nodular hyperplasia (PN hyperplasia). Both lesions were observed in all rats. An increase of collagen fibers and occasional dilated blood vessels were evident in the submucosa. Diverticuli became smaller and smaller and finally disappeared or remained as tiny glandular cavities within the muscle layer. Dilated and thickened urinary bladder and ureter walls gradually returned to the normal appearance although papillary hyperplasia of the ureter did not regress as quickly as that in the urinary bladder.

The time sequence of development and disappearance of calculi and proliferative epithelial lesions in the bladder is illustrated in Fig. 4.

Cell Kinetics. Fig. 5 illustrates the changes in labeling indices of bladder epithelial cells during and after treatment with uracil. The index was expressed as the percentage of anti-BrdUrd-positive cells and the value for normal bladder epithelium before

![Fig. 2. Dysplasia of the bladder epithelium observed in a rat given uracil for 25 weeks (H & E, × 200).](image)

![Fig. 3. Epithelial changes of the bladder after withdrawal of uracil treatment, a, note vacuoles containing cell debris and pyknotic nuclei in the epithelial layer (H & E, × 400); b, collapse of the luminal protrusions at Week 2 (× 200).](image)

![Fig. 4. Illustration of the time sequence in the development and disappearance of calculi and epithelial proliferative lesions. S; simple hyperplasia, PN; papillary and/or nodular hyperplasia, P; papillomatosis.](image)

Table 2 Disappearance of calculi and proliferative lesions in the bladder and ureter after cessation of uracil treatment

<table>
<thead>
<tr>
<th>Weeks after uracil treatment</th>
<th>No. of rats examined</th>
<th>Urinary bladder</th>
<th>Ureter epithelial hyperplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Calculi</td>
<td>Simple hyperplasia</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>+++*</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* PN hyperplasia, papillary or nodular hyperplasia.

+ , no change; ±, trace; +, slight; ++, moderate; ++++, marked.
URACIL-INDUCED REVERSIBLE PAPILLOMATOSIS IN THE RAT BLADDER

Fig. 5. Labeling indices of bladder epithelial cells during and after withdrawal of uracil administration.

Fig. 6. BrdUrd incorporation in the nuclei of bladder epithelial cells at different time points. a, on Day 4 of uracil administration, many cells including surface cells are labeled (×200); b, at Week 8 of uracil treatment, many labeled cells are observed in papillomatosis (×200); c, 1 week after withdrawal of uracil treatment, mucosa still showed papillomatosis but only one cell in this field is labeled (at arrow) (×200). Sections were stained immunohistochemically by the ABC method.

DISCUSSION

The results of the present experiments confirmed our previous findings that uracil at a concentration of 3% in diet readily induces urolithiasis and papillomatosis in rats and that these lesions, at least up to 15-week treatment, are reversible (10). Sequential analysis revealed that the development of urolithiasis and proliferation of the urothelium begins very shortly after the commencement of treatment with uracil with a very rapid, marked increase in DNA synthesis in the epithelial cells of the urinary bladder. Although DNA synthesis decreased from the peak of 32% observed on Day 4 of uracil administration, the level of labeling remained very elevated, being still 6.4% at Week 8, a value more than 100 times the normal level. Thus continuous vigorous cell proliferation throughout the bladder leads to formation of papillary growths of the epithelium, and since the maximum thickness of normal epithelium without fibrovascular proliferation seems to be seven or eight cell layers, over-proliferation inevitably induces mucosal exophytic growth which requires the support of fibrovascular tissue resulting in the formation of a diffuse papillary structure.

Although the histopathological pattern of epithelial growths superficially resembles that observed in tumors, the three-dimensional structure of the mucosa was revealed by scanning electron microscopy to be relatively normal. The mucosal ridges were of constant width and were supported by regular vascular...
URACIL-INDUCED REVERSIBLE PAPILLOMATOSIS IN THE RAT BLADDER

Fig. 7. Scanning electron microscopic appearance of the luminal surface of the urinary bladder. a, After 7 days of uracil administration, winding inter-connecting mucosal ridges are evident (× 140); b, after 8 weeks of uracil administration. Note mucosal ridges showing a cerebral convolution-like appearance (× 140).

Fig. 8. Vascular pattern of the urinary bladder of a rat given uracil for 2 weeks, a, × 50; b, × 200.

networks. In contrast, proliferative bladder lesions induced by carcinogens are topographically very abnormal (17, 18), with mucosal ridges or ruga being irregularly distributed and of varying dimensions. The characteristic sequence of events in carcinogen-treated bladders is the development of polyp-like papillary hyperplasias, papillomas and carcinomas (17, 18). The vascular pattern observed in the present study was similar to that of the Type 3 vascular proliferation in the reversible stage of response to both carcinogens and noncarcinogens (15, 19). Thus the reversibility and morphological characteristics described in the present paper indicate that papillomatosis of the urinary bladder induced by uracil calculi is not a true neoplastic lesion.

The observed induction of vigorous cell proliferation seems to be due to direct mechanical irritation by the calculi formed by uracil. This conclusion is supported by the fact that no other epithelial cells other than those comprising the urothelium were involved and that there was a correlation in the degree between calculus formation and epithelial cell proliferation; the urinary bladder exhibited the most marked cell proliferative response while the epithelium of the ureter or renal pelvis showed only mild proliferative responses. It is well known that rat urinary bladder is very sensitive to various sources of mechanical stimulation (2–5). It is also noteworthy that coadministration of 5% NaCl in the diet with 3% uracil inhibited the formation of uracil calculi, presumably due to threelfold increase in urinary volume, and resulted in no hyperplasia of the mucosal epithelium. Erosion and ulceration of the bladder epithelium observed on Days 2 and 4, therefore, are considered to probably be due to crystals of uracil excreted into the urine rather than being associated with any chemical property or effect of uracil.

Since saturation of uracil in the urine is necessary for development of calculi, they would be expected to dissolve and rapidly disappear when uracil is withdrawn from the diet. The decrease in size and number of calculi may account for the rapid regression of papillomatosis, probably because the decreased volume of calculi no longer stimulates the epithelium enough to maintain the hyperplastic condition. During the period of disappearance of papillomatosis, no massive areas of necrosis were found and therefore single cell necrosis observed scattered throughout the epithelium of the papillomas is presumably responsible for the gradual return to normal. This process may be comparable to the controlled cell death referred to as “apoptosis” which was described earlier (20).

4 S. Fukushima et al., unpublished data.
The reason(s) why simple and PN hyperplasia persisted in the cal urolithiasis such as that observed with terephthalic acid (21) explain development of bladder tumors associated with chemi considered to be hyperplastic rather than neoplastic. This model the present findings suggest that prolonged cell proliferation in unknown carcinogens by way of the urine can not be excluded, or early carcinomas. Although the possibility that exposure to experiment in our laboratory a high incidence of carcinomas was found in rats given uracil for 36 weeks and killed 4 weeks later (22). Therefore, the dysplastic lesions may be premalignant or early carcinomas. Although the possibility that exposure to unknown carcinogens by way of the urine can not be excluded, the present findings suggest that prolonged cell proliferation in response to mechanical irritation by calculi may itself evoke malignant transformation of the urothelium. This might also explain development of bladder tumors associated with chemi urolithiasis such as that observed with terephthalic acid (21). The reason(s) why simple and PN hyperplasia persisted in the bladder after disappearance of calculi and why epithelial papillary hyperplasia of the ureter persisted for a longer period than did the bladder hyperplasia remain unknown.

In conclusion, development of papillomatosis and diverticula in response to uracil or other sources of irritation should be considered to be hyperplastic rather than neoplastic. This model should provide a useful tool for clarification of whether inter nal factors which can stimulate cell growth after mechanical irritation also exist.

REFERENCES

Cell Proliferation Induced by Uracil-Calculi and Subsequent Development of Reversible Papillomatosis in the Rat Urinary Bladder

Tomoyuki Shirai, Shoji Fukushima, Yoshiaki Tagawa, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/49/2/378

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.