Identification of a Human Homologue of the Murine Tumor Rejection Antigen GP96

Pramod K. Srivastava and Lloyd J. Old

ABSTRACT

A family of cell surface glycoproteins with a molecular weight of 96,000 (gp96) has recently been implicated in the individually distinct immunogenicity of chemically induced sarcomas of inbred mice. Rabbit antiserum to murine gp96 detects an antigenically related M, 96,000 cell surface glycoprotein on two cultured human melanoma cell lines, SK-MEL-13 and SK-MEL-177. Molecular probes for 5′ and 3′ ends of the murine gp96 gene detect a 3.5-kilobase transcript in RNA preparations from melanoma cells, similar to the murine gp96 transcript. While 5′ probes do not hybridize to Southern blots of genomic human DNA, the 3′ probes identify several distinct bands under stringent hybridization and washing conditions. This suggests that the 3′ end of the gp96 gene is more conserved than its 5′ end. No gross alterations in gp96 gene organization were detected in melanoma cells. B-lymphoblastoid cell lines derived from four different individuals also showed no restriction fragment polymorphism in the gp96 gene.

INTRODUCTION

Identification of tumor cell surface antigens recognized by autologous or syngeneic host remains the central issue of tumor immunology. In the study of human cancer, evidence for humoral (1) and cellular (2) immune recognition with specificity for human cancer cells continues to accumulate and a number of the antigens detected serologically have been characterized as gangliosides (3-5) and glycoproteins (5-8). In the case of experimental tumors, the clearest evidence for tumor-specific immunity comes from the demonstration of tumor rejection antigens that elicit transplantation immunity in syngeneic animals (9, 10). Recent studies have implicated M, 96,000 glycoproteins as the tumor rejection antigens of antigenically distinct chemically induced sarcomas of inbred mice (11). This present communication describes the identification of a human cell surface antigen which shares homology with the murine tumor rejection antigen gp96, in terms of its serologically detected determinants and its molecular features.

MATERIALS AND METHODS

Cell Lines. Human melanoma cell lines SK-MEL-13 and -177 have been described (5).

Erythrocyte Rosetting. Detection of binding of antibodies to melanoma cell lines was carried out as described (5).

Preparation of Protein Extracts. Cells were scraped from the surface and washed three times with phosphate buffered saline. A cell pellet of 0.2 ml was suspended in 1 ml phosphate buffered saline containing 0.1 mM phenylmethyl sulfonylfluoride and the suspension was sonicated and washed three times with phosphate buffered saline. A cell pellet of determined in tumor cells. B-lymphoblastoid cell lines derived from four different individuals also showed no restriction fragment polymorphism in the gp96 gene.

The supernatant was collected and was solubilized by addition of 0.1 volumes of 2% sodium deoxycholate. The suspension was kept on ice for 20 min with occasional shaking and was centrifuged at 15,000 x g for 15 min. The supernatant was collected and frozen at -70°C in several aliquots.

Western Blotting. Protein extracts were applied to sodium dodecyl sulfate-polyacrylamide gels and were blotted to nitrocellulose and probed with a rabbit serum as described (12).

Southern and Northern Blotting. Genomic DNA and RNA were extracted, blotted to nitrocellulose, and probed as described (13).

RESULTS AND DISCUSSION

Detection of a Murine gp96-related Antigen on Human Melanoma. Generation of a rabbit antiserum to purified murine gp96 has been described in “Materials and Methods.” In erythrocyte rosetting assays for detection of cell surface antigens, this serum reacted (titer, 1:128) with two human melanoma cell lines SK-MEL-13 and -177; no reactivity was seen with non-immune rabbit serum. A surface-iodinated extract of SK-MEL-13 was immunoprecipitated with this serum and the precipitate was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single band of M, 96,000 was observed (Fig. 1). Protein extracts from the two cell lines were also analyzed by Western blotting. Partially purified murine gp96 prepared from the BALB/c sarcoma Meth A was also applied to the gels for comparison. The Western blots were probed with rabbit anti-gp96 antiserum and the nonimmune rabbit serum. The results show (Fig. 1) that rabbit anti-gp96 antiserum detects a molecule with 96,000 molecular weight in both melanoma cell lines. The murine and human melanoma gp96 molecules appear indistinguishable in size.

Northern Blot Analysis. Total RNA preparations from the two melanoma cell lines were probed with the murine gp96 probe pMA2 which defines the 5′ end of the gp96 gene (14) and pV3, which defines the 3′ end of the gene. In both melanomas, a 3.5-kilobase transcript, identical to the murine gp96 transcript, was detected with pMA2 and pV3 (Fig. 2).

Southern Blot Analysis. High molecular weight DNA from the cell line SK-MEL-13 was digested with restriction endonucleases BamHI, EcoRI, or PstI. Southern blots of these samples were probed with the 5′ probe pMA2: under high and low stringency conditions, no reproducibly hybridizing bands were observed. However, when the same blots were probed with pV3, a cDNA fragment which defines the relatively 3′ end of the murine gp96 gene, several bands were found to hybridize even under conditions of high stringency (Fig. 3). This observation suggests that the 5′ region of the gp96 gene is less

1 Received 9/19/88; revised 12/5/88; accepted 12/14/88.
2 Recipient of a First Independent Research Support and Transition Award of the National Cancer Institute (CA-44786). To whom requests for reprints should be addressed at Box 1215, Department of Pharmacology, Mount Sinai School of Medicine, City University of New York, New York, NY 10029.

Received 9/19/88; revised 12/5/88; accepted 12/14/88.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by a program project Grant CA-08748 of the National Cancer Institute, a grant from the Samuel Freeman Trust, and an American Cancer Society in-house award (1143) to P. K. S.
2 Recipient of a First Independent Research Support and Transition Award of the National Cancer Institute (CA-44786). To whom requests for reprints should be addressed at Box 1215, Department of Pharmacology, Mount Sinai School of Medicine, City University of New York, New York, NY 10029.
HUMAN HOMOLOGUE OF MURINE TUMOR ANTIGEN gp96

Fig. 1. Immunochemical identification of human gp96. Lane 1, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of immunoprecipitate of 125I-surface-labeled SK-MEL-13 cells with rabbit anti-murine gp96 antisera. Lanes 2 and 3, Western blots of extracts of BALB/c tumor Meth A (Lane 2) and SK-MEL-13 cells (Lanes 3) probed with rabbit anti-murine gp96. Lanes 4 and 5, Western blots of the same extracts probed with nonimmune rabbit serum.

Fig. 2. Northern blot hybridization of 32P-labeled pMA2 with poly(A)+ RNA from BALB/c sarcoma Meth A (Lane 1) and total RNA from SK-MEL-13 (Lane 2) and SK-MEL-177 (Lane 3).

Fig. 3. Southern blot hybridization of 32P-labeled pMA2 with genomic DNA from SK-MEL-13 (left) and B-lymphoblastoid cell line NANN (right) derived from peripheral blood lymphocytes of a healthy individual. Southern blots of genomic DNA from SK-MEL-177 and Boleta, KT12, and Poco cell lines showed an identical pattern. DNA (15 μg/lane) was digested with BamHI (Lane 1), EcoRI (Lane 2) and PstI (Lane 3).

ACKNOWLEDGMENTS

We thank Dr. Vivien R. Sutton for the gift of genomic DNA from B-lymphoblastoid cell lines derived from peripheral blood lymphocytes from normal donors.

REFERENCES


4 Unpublished observations.
Identification of a Human Homologue of the Murine Tumor Rejection Antigen GP96

Pramod K. Srivastava and Lloyd J. Old


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/49/6/1341

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.