Interaction of CC-1065 and Its Analogues with Mouse DNA and Chromatin

Bruce C. Moy, Mark D. Prairie, William C. Krueger, and Bijoy K. Bhuyan

Departments of Cancer and Infectious Diseases Research [B. C. M., B. K. B.] and Physical and Analytical Chemistry [M. D. P., W. C. K.], The Upjohn Company, Kalamazoo, Michigan 49001

ABSTRACT

CC-1065 is a potent antitumor antibiotic which is cytotoxic to P388 and L1210 leukemia cells in vitro and in vivo. CC-1065 covalently binds to calf thymus DNA preferentially to adenine-thymine regions at N3 of adenine. Here, we compare CC-1065 interaction with P388-derived chromatin, DNA, and histones as measured by electronic absorption and circular dichroism. Two CC-1065 analogues (U-71,184 and its enantiomer, U-71,185) which show different biological activities from CC-1065 were also studied.

The shape and temporal behavior of the induced circular dichroism curves generated by CC-1065 or its analogues bound to chromatin were similar to CC-1065 plus DNA. This suggested that CC-1065 and its analogues bind to the minor groove of chromatin DNA in a manner similar to calf thymus DNA. However, the binding of CC-1065 and its analogues to DNA induced a more intense circular dichroism band than binding to chromatin. The order of interaction for both chromatin and DNA was CC-1065 > U-71,184 = U-71,185. In contrast to the essentially irreversible binding to DNA after 24-h incubation, binding to chromatin was primarily a reversible interaction, the degree of reversibility being U-71,185 > U-71,184 = CC-1065. CC-1065 binds weakly and nonspecifically to histones.

INTRODUCTION

CC-1065, an antitumor antibiotic produced by Streptomyces zelensis (1–3), is one of the most cytotoxic antitumor agents known. It was active against P388 leukemia, L1210 leukemia, CDF81 mammary carcinoma, and colon 26 carcinoma in vivo (4). In comparison to Adriamycin, CC-1065 was 100-fold more potent against a broad panel of human tumors in a cloning assay (5). DNA synthesis was inhibited by CC-1065 much more than either RNA or protein synthesis (5, 6). Alkylation experiments, competitive binding experiments with netropsin, and studies using glycosylated T, DNA indicated that CC-1065 binds to the minor groove of DNA with preference for A-T-rich regions (7, 8). Thermal melting of DNA and differential circular dichroism studies indicated that CC-1065 dramatically stabilized the DNA helix upon binding, and about 7 to 11 base pairs per CC-1065 were required for saturation binding of DNA. CC-1065 and analogues bind to CT-DNA by at least 2 mechanisms, one which produces a reversibly bound (extractable) species and the other which produces an irreversibly bound (nonextractable) species, shown to be the adenine N3 adduct. The reversibly bound species converts to the adduct over a period of hours (9). CC-1065 did not intercalate since binding to supercoiled DNA produced no change in DNA mobility on agarose gels. CC-1065 did not bind to single-stranded DNA, RNA, or protein.

The development of CC-1065 toward clinical trials was stopped because later studies showed that CC-1065 caused delayed death at subtherapeutic doses (10). In order to obtain compounds that retained antitumor activity without appreciable toxicity, several CC-1065 analogues were prepared. Of these analogues, U-71,184 was chosen for detailed study, particularly because of its significant in vivo antitumor activity (11–14) without delayed toxicity. Like CC-1065, U-71,184 also bound to DNA and caused marked inhibition of RNA and DNA synthesis. However, doses required for inhibition of nucleic acid synthesis were much higher than the dose for cell lethality. This discrepancy suggested that inhibition of nucleic acid synthesis may not be causally related to lethality. Further studies showed that unbalanced growth and cell death may be related (15).

Most CC-1065 studies have primarily used extracted DNA or synthetic oligonucleotides for binding studies. However, nuclear DNA does not exist as loosely associated (naked) DNA but is packaged as chromatin (16). Chromatin consists of repeating nucleosome subunits composed of an interior core of histones around which are wrapped approximately 140 base pairs of the B-form of DNA. Each nucleosomal subunit is connected to the next with a stretch of DNA called the “linker” region. The organization of chromatin in eukaryotic nuclei plays an important role in the regulation of gene expression (17). Several investigators have used chromatin as a model to examine biochemical mechanisms of certain antitumor agents (18–21). In some cases, drug interaction with DNA was different from that with chromatin preparations. We report here the interaction of CC-1065 and two of its analogues (U-71,184 and its enantiomer, U-71,185) with DNA, chromatin, and histone. Parts of this paper were presented previously as an abstract (22).

MATERIALS AND METHODS

Drugs. CC-1065, a fermentation product (2), was supplied by Dr. David Martin at The Upjohn Company. CC-1065 analogues (U-71,184 and U-71,185) were synthesized by Dr. Martha Warpehoski at The Upjohn Company, Kalamazoo, MI (11, 12). All compounds were dissolved in dimethyl sulfoxide or dimethylacetamide at 1 mg/ml and were stored in glass vials at −20°C.

Cell Cultures. P388 mouse leukemia cells were obtained from the National Cancer Institute-Frederick Cancer Research Facility, Division of Cancer Treatment Tumor Repository (Frederick, MD). These cells were maintained in vitro in RPMI 1640 medium (K. C. Biologicals, Lenexa, KS) with 5% FCS (HyClone, Logan, UT) in a 5% CO2 humidified incubator. L1210 mouse leukemia cells were maintained in RPMI 1634 medium (Whittaker Bioproducts, Walkersville, MD) and supplemented with 5% FCS, 0.075% sodium bicarbonate, 100 µg/ml of penicillin, and 50 µg/ml of streptomycin. Both cell lines were grown exponentially and subcultured prior to reaching stationary phase. Cells were suspended in growth medium supplemented with 7% dimethyl sulfoxide and then stored in liquid nitrogen.

Chromatin Preparation. Unless otherwise indicated, the following steps were performed on ice. Nuclei were isolated by Triton X-100 treatment (23). Briefly, P388 cells (4 to 6 x 10⁶/ml) were centrifuged and washed three times in phosphate-buffered saline. Pelleted cells were resuspended in 10 mM Tris (pH 7.4):10 mM NaCl:1 mM MgCl₂ and allowed to swell on ice for 30 min. The cell suspension was homogenized with 10 strokes of a Potter-Elvejem tissue grinder (Wheaton)
and then centrifuged, and the resulting pellet was resuspended in Solution 3 [0.32 M sucrose: 1 mM MgCl₂: 0.6% Triton X-100 (pH 7.2)] and homogenized. After centrifugation, the pellet was washed 3 times in Solution 3, washed twice, and resuspended in Solution 1 [0.32 M sucrose: 2 mM MgCl₂: 1 mM potassium phosphate (pH 6.8)]. The nuclear preparation was free of cytoplasmic contamination as judged by phase-contrast microscopy. The integrity of the nuclear membrane was checked after staining with 0.5% trypan blue by phase-contrast microscopy.

Chromatin was prepared from isolated nuclei as described previously (24). Briefly, isolated nuclei were washed in 10 mM Tris buffer (pH 8.0) and suspended in 25 mM EDTA:10 mM Tris (pH 8.0). The suspension was then homogenized with 5 strokes, centrifuged, and washed 3 times with 50 mM Tris buffer (pH 8.0). The resulting pellet was washed with 0.12 M NaCl: 5 mM magnesium acetate: 20 mM Tris (pH 8.0) and then resuspended in 0.01 M Tris (pH 7.2). The purity of chromatin preparation (25) was checked by spectrophotometric analysis (ratio of A₂₆₀ nm/A₂₈₀ nm, 1.07; A₂₆₀ nm/A₅₇₈ nm, 0.56). The integrity of the chromatin preparation was indicated by CD measurements as described in the text (see "Results").

DNA Preparation. DNA was extracted from P388 cells as described (26) and treated with RNase and protease K. DNA was extracted with phenol:chloroform, ethanol precipitated, and resuspended in 10 mM Tris (pH 7.4):1 mM EDTA, and the concentration was determined at A₂₆₀ nm or via baseline method (see below) by spectrophotometry. For some experiments, calf thymus DNA (CalBiochem, San Diego, CA) was used.

Preparation of Acid-soluble Nuclear Proteins. Nuclei were isolated by the Triton X-100 method described previously (23). Acid-soluble nuclear proteins were prepared from nuclear pellets (27). Pelleted nuclei were extracted twice with 0.4 M H₂SO₄ for 2 h, and the supernatants were pooled. Histones and other acid-soluble nuclear proteins were precipitated in 20% trichloroacetic acid for 18 h. The final pellet was washed with acidified acetone (20 mM HCl) and then with acetone.

For certain experiments, calf thymus histones (Sigma Chemical Co., St. Louis, MO) were used with or without further purification as described. Histone protein concentration was estimated by A₂₆₀ nm, and each of four core histones and histone H₁ were identified by gel electrophoresis.

CD and Electronic Absorption Measurements. Electronic absorption spectra were obtained on Perkin-Elmer Lambda 5 or 6 spectrophotometer. Induced CD measurements, expressed as molar ellipticity, were used to any possible scattering effects, especially for CC-1065 and U-71,184, or U-71,185. Since U-71,185 may contain up to 1% of U-71,184, the inherent potency of U-71,185 cannot be distinguished from the contaminating active isomer.

RESULTS

Biological Activity of CC-1065 and Its Analogues. The structure and P388 cytotoxicity of CC-1065, U-71,184, and U-71,185 are shown in Table 1. U-71,184 is more cytotoxic than CC-1065 to P388 cells in vitro (Table 1) and has been shown to have greater antitumor effect in vivo (14). U-71,185, the mirror image isomer of U-71,184, is almost as potent as U-71,184. Since U-71,185 may contain up to 1% of U-71,184, the inherent potency of U-71,185 cannot be distinguished from the contaminating active isomer.

CD Spectrum of P388 Chromatin and DNA. Isolated P388 chromatin and DNA were suspended in 10 μM Tris-HCl (pH 7.2) and analyzed by CD spectroscopy (Fig. 1). The P388 chromatin showed a CD band at 272 nm (molar ellipticity = +6000), a shoulder near 245 nm, and a zero cross-over point of 258 nm. P388 DNA showed a CD band at 270 nm (+7300) and 245 nm (-7700) and a zero cross-over point of 256 nm. These CD data are in good agreement with those reported for DNA and chromatin by others (29, 30).

Comparison of Induced CD Spectra of CC-1065 and Its Analogues. In Fig. 2, induced CD curves for CC-1065 and its analogues with chromatin or DNA are compared to the molar ellipticity curves of drug alone at various incubation times. With the exception of U-71,185 plus chromatin, all drugs show intense induced CD bands (upon binding to the chromatin or DNA), suggesting an acquired helical asymmetry. The qualita-
Table 1 Properties of CC-1065 and its analogues

<table>
<thead>
<tr>
<th>Compound</th>
<th>P388 in vitro 90% growth inhibition (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CC-1065</td>
<td>0.09</td>
</tr>
<tr>
<td>U71184</td>
<td>2.00</td>
</tr>
</tbody>
</table>

* After 3-day growth at 37°C.

Reversibility of Drug-Chromatin Interaction. The reduction of induced CD upon phenol extraction of the complex of CC-1065 (or its analogues) with DNA and chromatin is shown in Fig. 3. The unbound or reversibly bound CC-1065 separated in the phenol layer while the irreversibly bound CC-1065 partitioned in the buffer phase with the DNA or chromatin. In all cases, interaction of the drugs with P388 chromatin was mostly reversible. The percentage of reduction of induced CD after phenol extraction was 70% for CC-1065, 82% for U-71,184, and 90 to 100% for U-71,185. Thus, the degree of reversible binding to chromatin was U-71,185 > U-71,184 > CC-1065. In contrast, the interaction of naked DNA with the compound was mostly irreversible. CC-1065- or U-71,184-DNA complex showed between 0 and 5% reduction of induced CD upon phenol extraction. U-71,185 plus DNA showed a 21% reduction of induced CD upon phenol extraction. The degree of reversible binding to DNA was U-71,185 > U-71,184 = CC-1065.

CC-1065 Interacts Weakly with Histones. Similar experiments as those described above were performed with isolated histones plus CC-1065 to determine the possible role of histones in binding drug to chromatin. There was no significant difference in absorbance spectrum between CC-1065 alone and CC-1065 plus histones (data not shown). We have observed that CC-1065 precipitates from a reaction mixture when there is no binding (9). In the case of histone plus CC-1065, precipitation of CC-1065 did not occur, suggesting that CC-1065 does bind to histones. However, this binding does not produce an induced CD (see below).

The CD curve of the histone-CC-1065 mixture is shown in Fig. 4 along with those of DNA and chromatin. The CD of the mixture cannot be distinguished from that of CC-1065. Thus, no significant induced CD is produced by the mechanism by which histones bind CC-1065. These results suggest that CC-1065 and, by extension, U-71,184 and U-71,185 bind very weakly and nonspecifically to P388 histones, and that the induced CD caused by chromatin results from DNA binding of the drug molecule.

 Binding Studies in 2.0 M NaCl. In another experiment, we...
measured the effect of 2 M NaCl on the interaction of CC-1065 with chromatin. At this salt concentration, histones are dissociated from DNA (31, 32). If the histones have no direct effect on the binding process, then this experiment should produce results similar to those with naked DNA. Fig. 5 shows that this is the case: the induced CD curves produced by chromatin and naked DNA in 2.0 M NaCl are identical in position and intensity (within experimental error); i.e., the dissociated histones have no effect on the binding. This result also indicates that CC-1065 and, by extension, U-71,184 and U-71,185 bind to the DNA of chromatin and not to the dissociated histones. Furthermore, the similar wavelength positions of the two CD bands of Fig. 5 suggest that relative amounts of reversible and irreversible bound species are equivalent. Thus, the different binding properties of chromatin, as compared to naked DNA, cannot be accounted for as a result of histone-bound drug.

Cytotoxicity of the Drug after Binding to DNA or Chromatin.

We next wanted to evaluate whether the difference between the DNA of chromatin and not to the dissociated histones. Furthermore, the similar wavelength positions of the two CD bands of Fig. 5 suggest that relative amounts of reversible and irreversible bound species are equivalent. Thus, the different binding properties of chromatin, as compared to naked DNA, cannot be accounted for as a result of histone-bound drug.

Cytotoxicity of the Drug after Binding to DNA or Chromatin.

We next wanted to evaluate whether the difference between the
interaction of DNA and chromatin with drug would also be true in a biological system. Growth inhibition by the complex of drug and calf thymus DNA or chromatin is compared to that of drug alone in Fig. 6. These results clearly show that, when CC-1065 or U-71,184 was mixed with calf thymus DNA, the cytotoxicity of the drug decreased markedly. Thus, 0.04 ng/ml of CC-1065 alone caused 98% inhibition of growth compared to only 23% inhibition when mixed with calf thymus DNA. For both drugs, chromatin caused less reduction in growth inhibition as compared to DNA. Premixing of histones with the drugs did not cause any reduction in growth inhibition (not shown).

DISCUSSION

Most CC-1065 binding studies have used naked DNA or synthetic oligonucleotides as substrates. Our studies were intended to characterize the interaction of CC-1065 with a more complex structure, i.e., chromatin. The chromatin used in these studies, isolated without a nuclease digestion step, consisted of high-molecular-weight species rather than monomeric or oligomeric nucleosomes. Our CD spectra of DNA and chromatin from P388 cells correlated well with reports by others and are clearly different from nuclease-digested chromatin or nuclear preparations (33–35). The CD binding studies show that CC-1065 and analogues bind to P388 chromatin and that the induced CD spectra are similar to those obtained when CC-1065 binds to P388 DNA and many other synthetic polynucleotides (9). Since these drugs do not bind significantly to histones, and since all experiments to date indicate that CC-1065 and its analogues require the minor groove of B-form DNA as the binding site (4), we assume the binding site of chromatin to be the minor groove of the DNA molecule.

We showed that the intensity of the induced CD spectra and the rate of conversion of reversibly bound drug to irreversibly bound drug are less for chromatin than for naked DNA. Since histones themselves do not bind to CC-1065, this suggests that histones act indirectly to restrict the binding of CC-1065 to chromatin. This could occur through fewer binding sites being available on chromatin as compared to DNA or due to the less chiral environment of chromatin. We assume here that a good fit in the minor groove leads to a more chiral environment for the drug chromophore and, hence, a more intense induced CD. At the molecular level, the goodness of fit probably depends upon the conformation of the DNA molecule and whether or not the chromatin proteins are close enough to the binding site to sterically or electronically inhibit the binding. Our CD experiments do not distinguish between these two possibilities. Alternatively, since conformational transition states of chromatin are regulated by histones as well as nonhistone proteins (17), the latter nuclear proteins may modulate CC-1065 action. HMG-1, which binds to A-T-rich regions in dsDNA (36) and interacts with the minor groove of B-form DNA (37), may regulate CC-1065 binding.

Several other antitumor drugs have been shown to bind less to chromatin than DNA. For example, with Adriamycin (20) and nogalamycin (21), fewer binding sites are available in chromatin than in DNA. In the case of nogalamycin, drug-DNA interactions were inhibited by the presence of core histones, histone H1, or non-histone proteins. Some antitumor compounds can also alter the structural orientation of chromatin DNA. For example, netropsin and berenil interacted with subchromatin and induced the DNA to rotate about one-half a turn so that regions facing outside now faced inside and vice versa (38). Since both CC-1065 and netropsin share similar binding characteristics, CC-1065 might also be able to induce a similar rotational change in the chromatin DNA.

Qualitatively the comparative binding of CC-1065 and U-71,184 to DNA, chromatin, or histone as measured by the growth inhibition assay correlated with CD results. Both drugs show significantly reduced cytotoxicity when premixed with CT-DNA, which indicates that the drugs are bound tightly (irreversibly) to DNA and are, therefore, not available to inhibit growth. Also, the more reversible binding to chromatin results in less growth inhibition which agrees with the lower induced CD and reversibility seen on phenol extraction (Fig. 3). In general, the potency of CC-1065 analogues correlates with their ability to bind to DNA, although there does not appear to be a quantitative relationship. It would be unrealistic to expect a quantitative correlation between DNA or chromatin binding data obtained under one set of conditions and the action of the drug at the cellular level or in whole animals.

In conclusion, chromatin can serve as a suitable substrate for studying interaction with CC-1065 and its analogues. In one respect, drug interaction with chromatin is significantly different from that with DNA in that the former was reversible, whereas the latter was a nonreversible, covalent interaction. In trying to explain the molecular action of these DNA binding agents at the cellular level, it is necessary to study a more complex paradigm than naked DNA.

REFERENCES

15. Adams, E. G., Badiner, G. J., and Bhuyan, B. K. Effects of U-71,184 and

Interaction of CC-1065 and Its Analogues with Mouse DNA and Chromatin

Bruce C. Moy, Mark D. Prairie, William C. Krueger, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/49/8/1983

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.