
Mark Ptashne is cited for his landmark contributions to mechanisms of regulation of gene expression. He has shown how regulatory proteins can bind DNA and turn genes on and off. What has been of fundamental importance in biology is the discovery that the same basic mechanism of gene regulation applies to all life, from the λ virus to the human genome. These sites of gene and protein interaction are obvious targets for future strategies in experimental approaches to cancer prevention and treatment (Ptashne, Mark. How gene activators work. Sci. Am., 260: 40–47, 1989).

Sir David Cox received the Charles F. Kettering Prize for his invention of a statistical method for analyzing data from clinical trials, allowing more detailed and incisive analysis and interpretation of results (Cox, David and Oakes, G. Analysis of Survival Data. Chapman and Hall, 1984). The practical importance of the Cox model in assessing therapies has been great and widespread, according to clinicians.

Dr. Cavenee, lower right, is director of the Montreal branch of the Ludwig Institute for Cancer Research and associate professor in the Departments of Pathology, Neurology, Medicine, Biology, and Human Genetics, McGill University, Montreal, Canada. Dr. White, upper right, is professor and cochairman of the Department of Human Genetics and Investigator in the Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City. Mark S. Ptashne, lower left, is professor of biochemistry and molecular biology, Harvard University, and Sir David Cox, upper left, is Warden of Nuffield College, Oxford.

Each award is for $100,000, and awardees are given an additional $30,000 to support a workshop of their choice. Photographs and information were kindly provided by Peter J. Peterson of the General Motors Cancer Research Foundation.