Characterization of the Estrogen Receptor in Two Antiestrogen-resistant Cell Lines, LY2 and T47D

Alaka Mullick and Pierre Chambon

ABSTRACT

Drug resistance occurs frequently during breast cancer treatment with antiestrogens. Since antiestrogen action is mediated by the estrogen receptor (ER), we have examined both the structural and functional properties of the ER present in two breast cancer cell lines, LY2 and T47D, which proliferate rapidly in the presence of antiestrogens. The ER function in LY2 cells was indistinguishable from that of the parental tamoxifen-sensitive MCF-7 cells as assessed by estrogen regulation of two endogenous genes and estrogen-regulated transcription in a transient transfection system. RNase protection assays, sensitive enough to detect single base pair mismatches, showed that the sequence of the coding region of ER of LY2 and T47D cells was wild type. Thus the ER appears to be normal in two independently isolated breast cancer cell lines whose growth is resistant to the inhibitory effect of antiestrogens. Moreover, conducting the cell proliferation studies in a phenol red-free medium, we have demonstrated that the antiestrogen resistance of LY2 and T47D cells corresponds in fact to an estrogen-independent growth.

INTRODUCTION

Antiestrogens are nonsteroidal compounds which bind to the ER. Antiestrogens are unable to elicit a receptor-mediated increase in transcription of several estrogen-induced genes (1). They can thus efficiently antagonize the action of estrogens and are promising therapeutic agents for hormone-dependent cancers, such as breast cancers (2). Although ER/PR level determinations have proved useful for the prediction of response to hormone therapy, there remain many tumors that possess estrogen receptors yet are resistant to the growth-suppressive effect of antiestrogens (3). Since antiestrogen action is mediated by the estrogen receptor (4), an alteration in the receptor could well render the cell resistant to antiestrogens. In fact steroid insensitivity has been described for the glucocorticoid receptor in some lymphomas (5), for the vitamin D receptor in hypocalcemic rickets (6), and for the androgen receptor in a case of androgen insensitivity syndrome (7). In each case it has been attributed to an alteration in the receptor. Changes such as a decrease in hormone binding and defect in DNA binding of the hormone-receptor complex have been reported in dexamethasone-resistant lymphoma cell lines (8, 9). A point mutation in the DNA binding domain of the vitamin D receptor has been associated with hypocalcemic rickets (6), and study of the androgen receptor gene in a family with complete androgen insensitivity has revealed a deletion of the steroid binding domain (10).

The MCF-7 cell line is derived from a pleural effusion of a human breast cancer (10) and expresses functional estrogen receptor. Following treatment with physiological concentrations of estradiol, in culture, these cells show a markedly increased proliferation rate. Moreover, the rate of transcription of several genes [PR, pS2 (11, 12), cathespin D (M, 52,000, 13), ER (14, 15)] is regulated by estrogens and antiestrogens in these cells. They thus provide a good in vitro model system to study hormone-dependent breast cancers. On the other hand, establishing an in vitro model system for tamoxifen-resistant breast cancers has been more difficult and little is known about the mechanism of such a resistance. The LY2 cell line was established by stepwise selection of MCF-7 cells grown in a medium containing increasing concentrations of the antiestrogen LY117018 (16). The establishment of such an antiestrogen-resistant variant of the MCF-7 cell line provides an excellent opportunity to investigate whether a mutation in the receptor could explain the observed antiestrogen resistance. The T47D cell line (17, 18) is an independently established cell line whose growth rate is unaffected by the presence of antiestrogens. T47D cells contain ER, but the ability of these receptors to function entirely normally has been questioned by several investigators (15, 18). Thus, these two independently derived cell lines, LY2 and T47D, provide a means of investigating the possible mechanisms of tamoxifen resistance in human breast cancers.

We have studied here both the structural and functional properties of the ER in the LY2 cell line in comparison with MCF-7, the parental cell line. We have found that they are indistinguishable with respect to the induction of estrogen-regulated genes. We have compared the primary sequence of the coding region of the ER mRNA by means of an RNase protection analysis sensitive enough to detect single base pair mismatches and found also no difference. Likewise the coding sequence of the ER mRNA in the T47D cell line was indistinguishable from that of the MCF-7 ER. An important outcome of this investigation has been the demonstration that resistance to growth inhibition by tamoxifen reflects in fact the estrogen independence of these cell lines for growth.

MATERIALS AND METHODS

Cell Culture. HeLa and MCF-7 cells were maintained in DMEM supplemented with FCS (19). LY2 cells were maintained in DMEM supplemented with dextran-coated charcoal treated FCS and 1 μM tamoxifen (16). T47D cells were grown in RPMI 1640 medium supplemented with FCS (18). Seven days before being used for a hormone-dependent assay, MCF-7 and LY2 cells were transferred to phenol red-free (20) DMEM supplemented with dextran-coated charcoal treated FCS.

RNA Preparation and Northern Analysis. HeLa, MCF-7, LY2, and T47D cell total RNA were prepared as described by Groudine et al. (21). After electrophoretical separation on a formaldehyde-agarose gel, RNA was transferred to Hibond-N membrane (Amersham) and hybridized with 32P-labeled nick-translated complementary DNA probes (20).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. 1 The present work was supported by grants from the CNRS, the INSERM (CNAMTS), the Ministère de la Recherche et de l'Enseignement Supérieur, the Fondation pour la Recherche Médicale, the Ligue Nationale Française contre le Cancer, and the Association pour la Recherche contre le Cancer.

2 Present address: Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada. To whom requests for reprints should be sent.

3 The abbreviations used are: ER, estrogen receptor; PR, progesterone receptor; DMEM, Dulbecco's modified Eagle's medium; FCS, fetal calf serum; CAT, chloramphenicol acetyl transferase; OHT, hydroxytamoxifen; ICI, ICI 164384; tk, thymidine kinase; IGF-I, insulin-like growth factor-I; EGF, epidermal growth factor; TGF-α, transforming growth factor-α.
characteristics of MCF-7 cells and of the tamoxifen-resistant subclone LY2, their proliferation rates were studied in the absence of estrogen (Fig. 1). The T47D cell responses to estrogen were not affected by estrogen/antiestrogen treatment (11). Thus the rate of LY2 proliferation in the absence of estrogen is comparable to that of MCF-7 grown in the presence of estrogen. These observations led us to investigate whether the observed estrogen-independent phenotype of the variant cell line LY2 resulted from an altered function of the receptor.

Induction of pS2 and Cathepsin D (M, 52,000) mRNA in MCF-7 and LY2 Cells by Estrogen and Antiestrogens. The rate of transcription of the pS2 (11, 12) and cathepsin D (M, 52,000 protein) (13) genes is regulated by estrogen/antiestrogen. We have studied the expression of these genes in both MCF-7 and LY2 cells to investigate the functional status of the ER in LY2 cells in comparison with MCF-7 cells. MCF-7 and LY2 cells grown in phenol red-free medium for 1 week were treated with either estradiol (10 nM), OHT (10 nM), or ICI (10 nM) for 3 days. The levels of pS2 and cathepsin D mRNA were determined by standard northern blot analysis. In both cell lines, estradiol treatment resulted in an increase in the steady state levels of both pS2 and cathepsin D mRNA (Fig. 2, compare lanes 1 and 2; lanes 5 and 6), whereas no significant increase was observed following treatment with either antiestrogen (compare lanes 1, 3, and 4; lanes 5, 7, and 8; see Fig. 2, legend).

36B4 RNA was used as an internal control, since its level is counted on alternate days. Values represent the mean of three determinations (±10%).

The rate of LY2 proliferation in the absence of estrogen is comparable to that of MCF-7 grown in the presence of estrogen. These observations led us to investigate whether the observed estrogen-independent phenotype of the variant cell line LY2 resulted from an altered function of the receptor.

Induction of pS2 and Cathepsin D (M, 52,000) mRNA in MCF-7 and LY2 Cells by Estrogen and Antiestrogens. The rate of transcription of the pS2 (11, 12) and cathepsin D (M, 52,000 protein) (13) genes is regulated by estrogen/antiestrogen. We have studied the expression of these genes in both MCF-7 and LY2 cells to investigate the functional status of the ER in LY2 cells in comparison with MCF-7 cells. MCF-7 and LY2 cells grown in phenol red-free medium for 1 week were treated with either estradiol (10 nM), OHT (10 nM), or ICI (10 nM) for 3 days. The levels of pS2 and cathepsin D mRNA were determined by standard northern blot analysis. In both cell lines, estradiol treatment resulted in an increase in the steady state levels of both pS2 and cathepsin D mRNA (Fig. 2, compare lanes 1 and 2; lanes 5 and 6), whereas no significant increase was observed following treatment with either antiestrogen (compare lanes 1, 3, and 4; lanes 5, 7, and 8; see Fig. 2, legend).

36B4 RNA was used as an internal control, since its level is counted on alternate days. Values represent the mean of three determinations (±10%).

The rate of LY2 proliferation in the absence of estrogen is comparable to that of MCF-7 grown in the presence of estrogen. These observations led us to investigate whether the observed estrogen-independent phenotype of the variant cell line LY2 resulted from an altered function of the receptor.

Induction of pS2 and Cathepsin D (M, 52,000) mRNA in MCF-7 and LY2 Cells by Estrogen and Antiestrogens. The rate of transcription of the pS2 (11, 12) and cathepsin D (M, 52,000 protein) (13) genes is regulated by estrogen/antiestrogen. We have studied the expression of these genes in both MCF-7 and LY2 cells to investigate the functional status of the ER in LY2 cells in comparison with MCF-7 cells. MCF-7 and LY2 cells grown in phenol red-free medium for 1 week were treated with either estradiol (10 nM), OHT (10 nM), or ICI (10 nM) for 3 days. The levels of pS2 and cathepsin D mRNA were determined by standard northern blot analysis. In both cell lines, estradiol treatment resulted in an increase in the steady state levels of both pS2 and cathepsin D mRNA (Fig. 2, compare lanes 1 and 2; lanes 5 and 6), whereas no significant increase was observed following treatment with either antiestrogen (compare lanes 1, 3, and 4; lanes 5, 7, and 8; see Fig. 2, legend).

36B4 RNA was used as an internal control, since its level is not affected by estrogen/antiestrogen treatment (11). Thus the ER in the LY2 cell line mediates the transcriptional effects of both estradiol and antiestrogens in a manner very similar to that of the MCF-7 ER.

Activation of an Exogenous Estrogen Responsive Element by the Endogenous ER of MCF-7 and LY2 Cells. A transient transfection assay was used to further confirm that the transcriptional activation properties of the LY2 cell ER are identical to those of the ER of the parent MCF-7 cell line. The vitk-CAT plasmidic reporter gene contains the well characterized estrogen-responsive element of the Xenopus vittelogenin A2 gene (27) linked to the promoter of the herpes simplex virus 1
Fig. 2. Northern blot analysis of pS2 and cathepsin D (M, 52,000) mRNA. MCF-7 and LY2 cells grown in phenol red-free DMEM supplemented with dextran-coated charcoal treated FCS for 7 days were treated with either ethanol vehicle (C) (lanes 1 and 5), 10 nM estradiol (E2, lanes 2 and 6), 10 nM OHT (lanes 3 and 7), or 10 nM ICI 164384 (lanes 4 and 8) for 3 days. RNA was prepared as described (21), electrophoretically separated on a formaldehyde-agarose gel, and transferred to Hbond-N membrane (Amersham) (Materials and Methods). The slight increase in cathepsin D mRNA in lane 3 (OHT treatment) was not reproducible.

Fig. 3. Stimulation of expression of the ER reporter gene vit-tk-CAT in transiently transfected MCF-7 and LY2 cells. MCF-7 and LY2 cells grown in phenol red-free DMEM supplemented with dextran-coated charcoal stripped FCS were transfected with vit-tk-CAT (1 µg) and a reference plasmid pCH110 (3 µg). Ethanol vehicle, estradiol (E2) (0.2 nM or 10 nM), OHT (10 nM), or ICI (10 nM) were added as indicated and CAT activity was assayed 48 h later as described (1).

tk gene, and expression of the bacterial CAT gene is under the control of this hybrid promoter. vit-tk-CAT was transfected into both cell lines and the effect of estradiol and antiestrogens on the vit-tk-CAT reporter transcription was studied.

The activation properties of the LY2 cell ER were clearly indistinguishable from those of the MCF-7 cell ER. Estradiol stimulated transcription from the tk promoter in both cell lines (Fig. 3, compare lanes 1, 2, and 3; lanes 8, 9, and 10), whereas the antiestrogens OHT (lanes 4 and 11) and ICI (lanes 5 and 12) did not do so. Furthermore in LY2 cells, estradiol-induced transcription was antagonized as in MCF-7 cells by OHT (compare lanes 2 and 6; lanes 9 and 13) and ICI (compare lanes 2 and 7; lanes 9 and 14). These experiments further support the conclusion that a functional ER is present in the variant LY2 cell line.

Analysis of ER mRNA Sequence in MCF-7, LY2, and T47D Cell Lines using an RNase Protection Assay. Because the above tests for ER function did not reveal any differences with respect to the wild-type protein, we directly examined the coding sequence of LY2 ER mRNA. A RNase protection assay, sensitive enough to detect single base pair mismatches (25, 26) was used to study the ER mRNA in the LY2 cells (Fig. 4). Three overlapping antisense RNA probes were made and hybridized to total RNA extracted from MCF-7, LY2, or T47D cells (Fig. 4D and “Materials and Methods”). RNA extracted from the ER-negative HeLa cell line was used in all cases as a negative control (Fig. 4, lanes 3, 9, and 14). Probe A (Fig. 4A, lane 2) which corresponds to nucleotides 1–1020 of the ER mRNA-coding region plus 12 nucleotides of the 5'-untranslated sequence and 1383 bases of BSM vector sequences, resulted in a specific major protected fragment of ≈1 kilobase in the RNase protection assay using either MCF-7, LY2, or T47D cell RNA (Fig. 4A, lanes 4–6, arrow). This band was not detected by using Hela cell RNA (Fig. 4A, lane 3). Probe B (Fig. 4B, lane 8) which corresponds to nucleotides 1035–1785 of the ER-coding sequence plus 15 nucleotides of 3'-untranslated sequence and 226 bases of BSM vector, yielded a specific protected fragment of 783 bases on hybridization with MCF-7, LY2, or T47D cell RNA and subsequent RNase digestion (Fig. 4B, compare lanes 9–12, arrow). To ensure that a mismatch close to the ends of probes A and B was not being overlooked an overlapping probe covering nucleotides 480–1272 of the ER-coding sequence and 1355 nucleotides of vector sequence (probe C) (Fig. 4C, lane 13) was used. On hybridization with MCF-7, LY2, or T47D RNAs (Fig. 4C, lanes 15–17, arrow), probe C (2148 nucleotides) gave a protected fragment of the expected size (793 nucleotides) which was not present in the HeLa cell RNA control lane (Fig. 4C, lane 14). Additional bands, located above and below the specific bands, were also present in the HeLa cell RNA control lanes. They correspond most probably to either partial digestion products of the probes or of the specific protected fragments.

DISCUSSION

Estrogen Receptor Present in LY2 and T47D Cells has Wild-type Properties. LY2 is a breast cancer cell line resistant to the growth-inhibitory effects of antiestrogens despite containing estrogen receptors at levels comparable to those of the tamoxifen-sensitive parental MCF-7 cell line (approximately 500 femtoliter/mg DNA; data not shown). The properties of the ER of this cell line were characterized here to determine whether its mutation could be the basis for antiestrogen resistance. The transcription of two known estrogen-responsive genes, the pS2 and cathepsin D (M, 52,000) genes was studied as a test of receptor function. Estradiol administration caused an increase in both pS2 and cathepsin D mRNA in both LY2 and MCF-7 cell lines, whereas antiestrogens did not, consistent with observations made at the protein level by Davidson et al. (28) and Cavailles et al. (13). However we did not observe reproducibly the cathepsin D mRNA induction with OHT which was reported by one of these groups (13). Thus the estrogen-induced transcription of these genes is unchanged in LY2 cells, which suggests that ER function is not altered.

The receptor function was further examined in a transient transfection assay wherein the reporter gene vit-tk-CAT was introduced into LY2 cells. CAT activity was greatly stimulated by estradiol administration and this activity was inhibited by both antiestrogens OHT and ICl, as in the tamoxifen-sensitive parental MCF-7 cell line.

These findings provide strong evidence for the presence of a functional ER in LY2 cells, whose transcriptional trans-activating properties are unaltered when compared with those of MCF-7 ER. To further support this conclusion, we directly examined the structure of the coding sequence of the ER. RNase protection analysis which is sensitive enough to detect single base pair mismatches, confirmed that the LY2 ER-coding sequence was wild type. Similar analysis performed on the TM3 mRNA from an independently isolated breast cancer cell line T47D, also resistant to the growth-inhibitory effect of anties-
certain mismatches, depending upon the surrounding bases may sequence encompassing the C and D domains and parts of the A/B and E domains (see also "Materials and Methods"). Antisense RNA probes were initiated at the Growth. Although no difference in ER structure or function was detected between the MCF-7 and LY2 cell lines, a striking be resistant to RNase cleavage (29), and therefore that, if such mismatches were to be present they would pass undetected to the probes. Probe A, which is 2390 base-long, contains 1032 bases of ER-coding sequence encompassing the A/B, C, D, and part of the E domains. Probe B is 1009 base-long and contains 783 bases of the ER-coding sequence including part of the E and F domains. Probe C is 2148 base-long and has 793 bases of ER-coding sequence encompassing the C and D domains and parts of the A/B and E domains (see also "Materials and Methods"). Antisense RNA probes were initiated at the T3 or T7 RNA polymerase promoters as indicated and terminated at either the XmnI (probes A and C) or PvuII (probe B) cleavage sites.

trogen, revealed no mismatches in the coding sequence of the ER in comparison with the wild type. However, that certain mismatches, depending upon the surrounding bases may be resistant to RNase cleavage (29), and therefore that, if such mismatches were to be present they would pass undetected using the present technique. The presence of mutations in these receptors is however unlikely, since both T47D and LY2 cell ERs bind estradiol with wild type characteristics (16, 18) and the transcriptional function of LY2 ER is apparently normal.

Antiestrogen Resistance Reflects Estrogen-independent Growth. Although no difference in ER structure or function was detected between the MCF-7 and LY2 cell lines, a striking difference in the "basal" rate of proliferation was found in the absence of estrogen. The parental MCF-7 cells divided very slowly in the absence of estrogen and their growth was strongly stimulated by estrogen, while the LY2 variant cell line proliferated almost optimally without estrogen. Furthermore, the "basal" rate of growth of MCF-7 and LY2 cells was not affected by the addition of antiestrogens OHT and ICI. This dramatic difference in the "basal" rates of proliferation of MCF-7 and LY2 cells was not noted in earlier studies (16), most probably because they were conducted in the presence of phenol red, a weak estrogen agonist, which in fact stimulates MCF-7 cell growth (20). Thus, in the work of Bronzert et al. (16), the antiestrogens OHT and LY117018, very likely blocked the effect of phenol red, resulting in a decreased rate of proliferation of MCF-7 cells in the absence of estrogen. It is clear from our present data that the "basal" rate of proliferation of both MCF-7 and LY2 cells are not affected by antiestrogen and that the higher "basal" rate of LY2 cell proliferation is only weakly increased by estrogens. Thus MCF-7 cells are antiestrogen-sensitive because of their estrogen requirement for proliferation. On the other hand, LY2 cells lack antiestrogen resistant, because they are mostly estrogen independent for their growth, although their ER is functional.

Since LY2 ER structure and function is indistinguishable from that of MCF-7 ER by several criteria, the almost complete estrogen independence of LY2 cells is not explicable by alterations in the estrogen receptor. Thus the control which is exerted by estrogen on the synthesis of some growth-stimulatory factors or growth inhibitors in the MCF-7 cell line are apparently no longer operating in the LY2 cell line. Estrogen treatment has been shown to enhance the secretion of several growth factors such as platelet-derived growth factor (30), IGF-I (31), and TGF-α (32) in the MCF-7 cell line. TGF-α can act through the EGF receptor (33). Moreover, PS2 and cathepsin D gene transcription is increased by estradiol and it has been suggested that they may function as growth factors (22, 34). One might expect that the regulation of one or more of these estrogen-regulated growth factors is altered in the LY2 cells in comparison with the MCF-7 cell line. The fact that LY2 cells continued to proliferate in the presence of antiestrogens, despite the observed inhibition of PS2 and cathepsin D gene expression, indicates that PS2 and cathepsin D gene products are not playing a key role in the antiestrogen-resistant growth of these cells, but does not exclude the possibility that they may be important for MCF-7 cell growth. Moreover, since PS2 gene transcription is increased by some growth factors including EGF (35), the observation that PS2 mRNA levels were not constitutively elevated in LY2 cells indicates that growth factors such as EGF or TGF-α are not constitutively upregulated by these cells. We note also that a recent report from Arteaga et al. (36) indicates that, although estrogen stimulates TGF-α secretion in MCF-7 cells, this increase in TGF-α is not a primary cause for enhanced proliferation in the presence of estradiol.

That selection of MCF-7 cells in a medium supplemented with the antiestrogen LY117018 resulted in variants that are estrogen-independent for growth, although their ER is functioning normally, is particularly relevant to cases of breast cancer that are classified as ER-negative, but are resistant to tamoxifen treatment or become so during the course of tamoxifen therapy. Note in this respect that the true antiestrogen ICI 164384 (37) is not more efficient at blocking the growth of LY2 cells than hydroxytamoxifen which is known to have both agonistic and antagonistic effects (38). Evidently, there has been a selection in the LY2 cells for an estrogen-independent growth-stimulatory machinery or the suppression of a growth-
inhibitory one. This could represent a general mechanism in the progression of breast cancer from tamoxifen sensitivity to insensitivity. Relevant to this, ras-transformed MCF-7 cells are also estrogen-independent for growth (39). These transformants display constitutively elevated expression of growth factors such as TGF-β and IGF-I, which appears to be under estrogen regulation in the parental cell line. It is also interesting to note that the regulation of the growth inhibitor TGF-β is altered in the LY2 cell line (40), inasmuch as it can no longer be induced by antiestrogen treatment of these cells in contrast to the MCF-7 parental cells.

Studies on the breast cancer cell line T47D have also revealed that tamoxifen resistance reflects an estrogen independence for growth (18). Previous reports have suggested that the ER may be altered in this cell line although the amounts of ER and estrogen responsiveness seem to vary in different clones of this cell line studied in different laboratories (15, 18). The cell line used in this investigation expresses ER protein at approximately 150 fmol/mg DNA (data not shown). The present results of RNase protection analysis indicate that the coding sequence of the ER mRNA of T47D cells studied is wild type (see also 25). That the ER in T47D cells is functionally wild type is further supported by the observation that the reporter gene vitkat-CAT can be effectively activated by estradiol administration when transfected into these cells (refs. 27, 41, and references therein). Thus LY2 and T47D cells provide independent examples of estrogen-independent growth despite the presence of functional receptors.

ACKNOWLEDGMENTS

We thank our colleagues of the receptor group and J. Y. Daniel, P. Basset, and M. S. Featherstone for helpful discussions and technical advice. We are grateful to M. Lippman for the gift of LY2 cells, to the Michigan Cancer Foundation for the gift of MCF-7 cells, to A. Wake ling (ICI Pharmaceuticals, UK) for providing hydroxytamoxifen and ICI 164384, and to V. Kumar and S. Green for making their plasmids available. We also thank A. Staub and F. Ruffenach for synthesizing oligonucleotides, the cell culture group for HeLa, MCF-7, LY2, and T47D cells, C. Werlé and B. Boulay for illustrations, and the secretarial staff for assembling the manuscript.

REFERENCES

region of the pS2 gene contains a complex enhancer region responsive to oestrogens, epidermal growth factor, a tumour promoter (TPA), the c-Ha-ras oncprotein and the c-jun protein. EMBO J., 8: 823–829, 1989.
Characterization of the Estrogen Receptor in Two Antiestrogen-resistant Cell Lines, LY2 and T47D

Alaka Mullick and Pierre Chambon


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/50/2/333

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.